Publications by authors named "Atul Sethi"

Metastasis is the leading cause of cancer-related deaths of breast cancer patients. Some cancer cells in a tumour go through successive steps, referred to as the metastatic cascade, and give rise to metastases at a distant site. We know that the plasticity and heterogeneity of cancer cells play critical roles in metastasis but the precise underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

The protein tyrosine phosphatase SHP2 activates oncogenic pathways downstream of most receptor tyrosine kinases (RTK) and has been implicated in various cancer types, including the highly aggressive subtype of triple-negative breast cancer (TNBC). Although allosteric inhibitors of SHP2 have been developed and are currently being evaluated in clinical trials, neither the mechanisms of the resistance to these agents, nor the means to circumvent such resistance have been clearly defined. The PI3K signaling pathway is also hyperactivated in breast cancer and contributes to resistance to anticancer therapies.

View Article and Find Full Text PDF
Article Synopsis
  • Metastatic colonization of distant organs is a major cause of death in solid cancers, and this study identifies a critical pathway in aggressive basal-like breast cancer involving the enzyme NNMT.
  • NNMT enhances cancer cell flexibility and is linked to worse outcomes in patients; when removed in mouse models, it significantly reduces metastasis.
  • The study reveals that NNMT influences specific genetic changes, promoting the expression of PRDM5, which is crucial for collagen production and metastatic spread.
View Article and Find Full Text PDF

Plasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g.

View Article and Find Full Text PDF

Treatment of metastasis remains a clinical challenge and the majority of breast cancer-related deaths are the result of drug-resistant metastases. The protein tyrosine phosphatase SHP2 encoded by the proto-oncogene PTPN11 promotes breast cancer progression. Inhibition of SHP2 has been shown to decrease metastases formation in various breast cancer models, but specific downstream effectors of SHP2 remain poorly characterized.

View Article and Find Full Text PDF

Metastasis is the main cause of deaths related to solid cancers. Active transcriptional programmes are known to regulate the metastatic cascade but the molecular determinants of metastatic colonization remain elusive. Using an inducible piggyBac (PB) transposon mutagenesis screen, we have shown that overexpression of the transcription factor nuclear factor IB (NFIB) alone is sufficient to enhance primary mammary tumour growth and lung metastatic colonization.

View Article and Find Full Text PDF

Diversity within or between tumours and metastases (known as intra-patient tumour heterogeneity) that develops during disease progression is a serious hurdle for therapy. Metastasis is the fatal hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic cascade, remain poorly defined. A clearer understanding of the cellular and molecular processes that underlie both intra-patient tumour heterogeneity and metastasis is crucial for the success of personalized cancer therapy.

View Article and Find Full Text PDF

Cancer is mostly incurable when diagnosed at a metastatic stage, making its early detection via blood proteins of immense clinical interest. Proteomic changes in tumor tissue may lead to changes detectable in the protein composition of circulating blood plasma. Using a proteomic workflow combining N-glycosite enrichment and SWATH mass spectrometry, we generate a data resource of 284 blood samples derived from patients with different types of localized-stage carcinomas and from matched controls.

View Article and Find Full Text PDF

The identification of biomarkers indicating the level of aggressiveness of prostate cancer (PCa) will address the urgent clinical need to minimize the general overtreatment of patients with non-aggressive PCa, who account for the majority of PCa cases. Here, we isolated formerly N-linked glycopeptides from normal prostate (n = 10) and from non-aggressive (n = 24), aggressive (n = 16), and metastatic (n = 25) PCa tumor tissues and analyzed the samples using SWATH mass spectrometry, an emerging data-independent acquisition method that generates a single file containing fragment ion spectra of all ionized species of a sample. The resulting datasets were searched using a targeted data analysis strategy in which an a priori spectral reference library representing known N-glycosites of the human proteome was used to identify groups of signals in the SWATH mass spectrometry data.

View Article and Find Full Text PDF

The rigorous testing of hypotheses on suitable sample cohorts is a major limitation in translational research. This is particularly the case for the validation of protein biomarkers; the lack of accurate, reproducible, and sensitive assays for most proteins has precluded the systematic assessment of hundreds of potential marker proteins described in the literature. Here, we describe a high-throughput method for the development and refinement of selected reaction monitoring (SRM) assays for human proteins.

View Article and Find Full Text PDF