Advancement in nanotechnology has unleashed the therapeutic potentials of dietary polyphenols by enhancing bioavailability, improving biological half-life, and allowing site-specific drug delivery. In this review, through citation of relevant literature reports, we discuss the application of nano-pharmaceutical formulations, such as solid lipid nanoparticles, nano-emulsions, nano-crystals, nano-polymersomes, liposomes, ethosomes, phytosomes, and invasomes for dietary polyphenols. Following this, we highlight important studies concerning different combinations of nano formulations with dietary polyphenols (also known as nanophytopolyphenols).
View Article and Find Full Text PDFCigarette smoking has been responsible for causing many life-threatening diseases such as pulmonary and cardiovascular diseases as well as lung cancer. One of the prominent health implications of cigarette smoking is the oxidative damage of cellular constituents, including proteins, lipids, and DNA. The oxidative damage is caused by reactive oxygen species (ROS, oxidants) present in the aqueous extract of cigarette smoke (CS).
View Article and Find Full Text PDFThis study involved cerebroprotective potential of aloe emodin (AE) by molecular docking analysis against various cerebrotoxic proteins followed by activity on multiple occlusions and reperfusion of bilateral carotid arteries (MO/RCA) induced cerebral injury in experimental rats. Molecular docking studies were carried out to evaluate the binding affinity (or binding interaction) between AE and various proteins involved in apoptosis such as caspase-3 (CASP3) and Bcl-2-associated X protein (BAX), and proteins involved in inflammation such as interleukin-6 (IL-6), tumor necrosis factor α (TNF α), nitric oxide synthase (NOS), acid-sensing ion channel (ASIC) and glutamate receptor (GR) involved in cerebral stroke, and results were compared with that of standard drugs, minocycline, quercetin, and memantine. Cerebral ischemic reperfusion induced by MO/RCA was assessed for 10 mins reperfusion period as one cycle, and the experiment was conducted for up to 3 cycles in rats.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus disease (SARS-CoV-2) induced coronavirus disease 2019 (COVID-19) pandemic is the present worldwide health emergency. The global scientific community faces a significant challenge in developing targeted therapies to combat the SARS-CoV-2 infection. Computational approaches have been critical for identifying potential SARS-CoV-2 inhibitors in the face of limited resources and in this time of crisis.
View Article and Find Full Text PDFChalcones are secondary metabolites belonging to the flavonoid (C-C-C system) family that are ubiquitous in edible and medicinal plants, and they are bioprecursors of plant flavonoids. Chalcones and their natural derivatives are important intermediates of the flavonoid biosynthetic pathway. Plants containing chalcones have been used in traditional medicines since antiquity.
View Article and Find Full Text PDFDue to the unavailability specific drugs or vaccines (FDA approved) that can cure COVID-19, the development of potent antiviral drug candidates/therapeutic molecules against COVID-19 is urgently required. This study was aimed at screening and study of polyphenolic phytochemical compounds in a rational way by virtual screening, molecular docking and molecular dynamics studies against SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) enzymes. The objective of the study was to identify plant-derived polyphenolic compounds and/or flavonoid molecules as possible antiviral agents with protease inhibitory potential against SARS-CoV-2.
View Article and Find Full Text PDF