Publications by authors named "Atul Daiwile"

Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats.

View Article and Find Full Text PDF

Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats.

View Article and Find Full Text PDF

Methamphetamine (METH) is the most commonly misused amphetamine-type stimulant throughout the globe. METH is very rewarding, and its misuse can lead to a diagnosis of METH use disorder (MUD). Although METH use is observed in both sexes, there are, however, reported differences in the clinical manifestations of METH use and its consequences.

View Article and Find Full Text PDF

Methamphetamine use disorder (MUD) is characterized by loss of control over compulsive drug use. Here, we used a self-administration (SA) model to investigate transcriptional changes associated with the development of early and late compulsivity during contingent footshocks. Punishment initially separated methamphetamine taking rats into always shock-resistant (ASR) rats that continued active lever pressing and shock-sensitive (SS) rats that reduced their lever pressing.

View Article and Find Full Text PDF

Sex differences have been reported in methamphetamine (METH) use disorder in humans and in animal models of METH exposure. Specifically, animals that self-administer METH show sex-related dissimilarities in dopamine (DA) metabolism. To better understand the molecular bases for the differences in DA metabolism, we measured the levels of mRNAs of enzymes that catalyze DA synthesis and breakdown in the prefrontal cortex (PFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and hippocampus (HIP) of rats that had self-administered METH.

View Article and Find Full Text PDF

Methamphetamine (METH) use disorder affects both sexes, with sex differences occurring in behavioral, structural, and biochemical consequences. The molecular mechanisms underlying these differences are unclear. Herein, we used a rat model to identify potential sex differences in the effects of METH on brain dopaminergic systems.

View Article and Find Full Text PDF

Methamphetamine (METH) use, and misuse are associated with severe socioeconomic consequences. METH users develop tolerance, lose control over drug taking behaviors, and suffer frequent relapses even during treatment. The clinical course of METH use disorder is influenced by multifactorial METH-induced effects on the central and peripheral nervous systems.

View Article and Find Full Text PDF

Methamphetamine (METH) is an illicit psychostimulant that is abused throughout the world. METH addiction is also a major public health concern and the abuse of large doses of the drug is often associated with serious neuropsychiatric consequences that may include agitation, anxiety, hallucinations, paranoia, and psychosis. Some human methamphetamine users can also suffer from attention, memory, and executive deficits.

View Article and Find Full Text PDF

Sex differences in METH use exist among human METH users and in animal models of METH addiction. Herein, we tried to identify potential differences in gene expression between female and male rats after Methamphetamine self-administration (METH SA). Rats were trained to self-administer METH using two 3-hours daily sessions for 20 days.

View Article and Find Full Text PDF

Background & Objectives: Coronary artery disease (CAD), a leading cause of mortality and morbidity worldwide has multifactorial origin. Epicardial adipose tissue (EAT) has complex mechanical and thermogenic functions and paracrine actions via various cytokines released by it, which can have both pro- and anti-inflammatory actions on myocardium and adjacent coronaries. The alteration of EAT gene expression in CAD is speculated, but poorly understood.

View Article and Find Full Text PDF

The biochemical and molecular substrates of methamphetamine (METH) use disorder remain to be elucidated. In rodents, increased METH intake is associated with increased expression of dopamine D1 receptors (D1R) in the dorsal striatum. The present study assessed potential effects of inhibiting striatal D1R activity on METH self-administration (SA) by rats.

View Article and Find Full Text PDF

Background: Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown.

View Article and Find Full Text PDF

Fluoride is an essential trace element required for proper bone and tooth development. Systemic high exposure to fluoride through environmental exposure (drinking water and food) may result in toxicity causing a disorder called fluorosis. In the present study, we investigated the alteration in DNA methylation profile with chronic exposure (30 days) to fluoride (8 mg/l) and its relevance in the development of fluorosis.

View Article and Find Full Text PDF

Chronic exposure to fluoride has been associated with the development of skeletal fluorosis. Limited reports are available on fluoride induced histone modification. However, the role of histone modification in the pathogenesis of skeletal fluorosis is not investigated.

View Article and Find Full Text PDF

Manganese is an essential trace element however elevated environmental and occupational exposure to this element has been correlated with neurotoxicity symptoms clinically identical to idiopathic Parkinson's disease. In the present study we chronically exposed human neuroblastoma SH-SY5Y cells to manganese (100μM) and carried out expression profiling of miRNAs known to modulate neuronal differentiation and neurodegeneration. The miRNA PCR array results reveal alterations in expression levels of miRNAs, which have previously been associated with the regulation of synaptic transmission and apoptosis.

View Article and Find Full Text PDF

Manganese (Mn) is an essential trace element required for optimal functioning of cellular biochemical pathways in the central nervous system. Elevated exposure to Mn through environmental and occupational exposure can cause neurotoxic effects resulting in manganism, a condition with clinical symptoms identical to idiopathic Parkinson's disease. Epigenetics is now recognized as a biological mechanism involved in the etiology of various diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Fluorosis results from prolonged excessive fluoride intake, impacting the RUNX2 signaling pathway crucial for bone development.
  • Research focused on the effects of sodium fluoride (NaF) on human osteosarcoma cells, aiming to uncover its influence on noncoding RNAs like miRNAs and snoRNAs.
  • The study identified miR-124 and miR-155 as potential regulators of RUNX2 and RANKL genes, with specific changes in UG dinucleotides and D-box sequences linked to NaF exposure.
View Article and Find Full Text PDF

The correlation of primary stress indicator; melanophore index (MI) with set of genomic stress indicators is important for a better understanding of the cellular stress pathway induced by xenobiotics in aquatic species. This study presents a correlation between melanophore index (MI) and genomic stress indicators in Oreochromis mossambicus treated with lead nitrate, phenol and hexachlorocyclohexane (HCH). O.

View Article and Find Full Text PDF

Aegle marmelos (Indian Bael) is a tree which belongs to the family of Rutaceae. It holds a prominent position in both Indian medicine and Indian culture. We have screened various fractions of Aegle marmelos extracts for their anticancer properties using in vitro cell models.

View Article and Find Full Text PDF