Comprehensive next-generation sequencing (NGS) assays enable the identification of clinically relevant mutations, enhancing the capability for targeted therapeutic interventions. In addition, genomic alterations driving the oncogenic roadmap and leading to resistance mechanisms are reshaping precision oncology. We report the workflow and clinical and technical validation of the OncoIndx NGS platform-a comprehensive genomic profiling (CGP)-based assay for pan-cancer investigation.
View Article and Find Full Text PDFCapturing circulating tumor cells (CTCs) from the peripheral blood of cancer patients, where they are disseminated among billions of other blood cells, is one of the most daunting challenge. We report OncoDiscover®, a multicomponent nano-system consisting of iron oxide (FeO) nanoparticles (NPs), polyamidoamine generation 4 dendrimers (PAMAM-G4-NH), graphene oxide (GO) sheets and an anti-epithelial cell adhesion molecule (anti-EpCAM) antibody (Fe-GSH-PAMAM-GO-EpCAM) for the selective and precise capture of CTCs. We further evaluated this system for therapeutically important oncotargets, exemplifying overexpression of the programmed death ligand 1 (PD-L1) as a functional assay on CTCs in cancer patients.
View Article and Find Full Text PDFBackground: The lack of appropriate prognostic biomarkers remains a significant obstacle in the early detection of Head and Neck Squamous Cell Carcinoma (HNSCC), a cancer type with a high mortality rate. Despite considerable advancements in treatment, the success in diagnosing HNSCC at an early stage still needs to be improved. Nuclear factor erythroid 2-related factor 2 (Nrf2) and Sonic Hedgehog (Shh) are overexpressed in various cancers, including HNSCC, and have recently been proposed as possible therapeutic targets for HNSCC.
View Article and Find Full Text PDFBackground: Liquid biopsy is emerging as a non-invasive tool, providing a personalized snapshot of a primary and metastatic tumour. It aids in detecting early metastasis, recurrence or resistance to the disease. We aimed to assess the role of circulating tumour cells (CTCs) as a predictive biomarker in recurrent/metastatic head and neck cancer (head and neck squamous cell carcinoma (HNSCC)).
View Article and Find Full Text PDFOral Surg Oral Med Oral Pathol Oral Radiol
July 2022
The growing need for developing new synthesis methods of plasmonic nanoparticles (PNPs) stems from their various applications in nanotechnology. As a result, a variety of protocols have been developed for the synthesis of PNPs of different shapes, sizes, and compositions. Though widely practiced, the chemical synthesis of PNPs demands stringent control over the experimental conditions, often employs environmentally hazardous chemicals for surface stabilization, and is frequently energy-intensive.
View Article and Find Full Text PDFAcidithiobacillus ferrooxidans (At. ferrooxidans) is a bacterium that has the ability to metabolize iron. It converts Fe into Fe during its metabolic cycle.
View Article and Find Full Text PDFA new nigericin analogue that has been chemically modified was synthesized through a fluorination process from the parent nigericin, produced from a novel strain DASNCL-29. Fermentation strategies were designed for the optimised production of nigericin molecule and subjected for purification and structural analysis. The fermentation process resulted in the highest yield of nigericin (33% (w/w)).
View Article and Find Full Text PDFHere, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.
View Article and Find Full Text PDFBackground: Magnetic nanoparticles (NPs) are of particular interest in biomedical research, and have been exploited for molecular separation, gene/drug delivery, magnetic resonance imaging, and hyperthermic cancer therapy. In the case of cultured cells, magnetic manipulation of NPs provides the means for studying processes induced by mechanotransduction or by local clustering of targeted macromolecules, e.g.
View Article and Find Full Text PDFSingle cell study is gaining importance because of the cell-to-cell variation that exists within cell population, even after significant initial sorting. Analysis of such variation at the gene expression level could impact single cell functional genomics, cancer, stem-cell research, and drug screening. The on-chip monitoring of individual cells in an isolated environment would prevent cross-contamination, provide high recovery yield, and enable study of biological traits at a single cell level.
View Article and Find Full Text PDFA promising avenue of research in materials science is to follow the strategies used by Mother Nature to fabricate ornate hierarchical structures as exemplified by organisms such as diatoms, sponges and magnetotactic bacteria. Some of the strategies used in the biological world to create functional inorganic materials may well have practical implications in the world of nanomaterials. Therefore, the strive towards exploring nature's ingenious work for designing strategies to create inorganic nanomaterials in our laboratories has led to development of biological and biomimetic synthesis routes over the past decade or so.
View Article and Find Full Text PDFThe bacterium Actinobacter sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (gamma-Fe2O3) and greigite (Fe3S4) under ambient conditions depending on the nature of precursors used. More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate.
View Article and Find Full Text PDFDevelopment of synthesis methods for anisotropic metal nanoparticles is of considerable interest due to their remarkable optoelectronic properties. Various shapes ranging from rods to cubes to tetrapods and prisms may be obtained by chemical methods. Here we show that anisotropic gold nanoparticles can be synthesized biologically by the bacterium Actinobacter spp.
View Article and Find Full Text PDFThe development of synthetic processes for oxide nanomaterials is an issue of considerable topical interest. While a number of chemical methods are available and are extensively used, the collaborations are often energy intensive and employ toxic chemicals. On the other hand, the synthesis of inorganic materials by biological systems is characterized by processes that occur at close to ambient temperatures and pressures, and at neutral pH (examples include magnetotactic bacteria, diatoms, and S-layer bacteria).
View Article and Find Full Text PDFThe synthesis of iron oxide nanoparticles of the predominantly magnetite phase by the reaction of aqueous iron complexes with the bacterium, Actinobacter spp., is described. This reaction occurs at room temperature and under aerobic conditions, resulting in the formation of superparamagnetic magnetite.
View Article and Find Full Text PDF