Pt/gamma-Al2O3 catalysts were prepared using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as the templating agents and the various steps of the preparation process were monitored by extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS results indicate that, upon hydrolysis, chlorine ligands in the H(2)PtCl(6) and K(2)PtCl(4) precursors were partially replaced by aquo ligands to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species, respectively. The results further suggest that, after interaction of such species with the dendrimer molecules, chlorine ligands from the first coordination shell of Pt were replaced by nitrogen atoms from the dendrimer interior, indicating that complexation took place.
View Article and Find Full Text PDFThe catalytic performance of cluster-derived PtFe/SiO(2) bimetallic catalysts for the oxidation of CO has been examined in the absence and presence of H(2) (PROX) and compared to that of Pt/SiO(2). PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were prepared from PtFe(2)(COD)(CO)(8) and Pt(5)Fe(2)(COD)(2)(CO)(12) organometallic cluster precursors, respectively. FTIR data indicate that both clusters can be deposited intact on the SiO(2) support.
View Article and Find Full Text PDFA high-resolution transmission electron microscopy (HRTEM) investigation of a family of supported Ru catalysts prepared from Ru hydroxyl-terminated poly(amidoamine) dendrimer-metal nanocomposite (DMN) precursors has been conducted. Ru particle sizes observed following deposition of DMNs on a HRTEM grid can be controlled within a 0.9-1.
View Article and Find Full Text PDF