Azelaic acid (AzA, 1,9-nonadienoic acid) is a nine-carbon chain (C) dicarboxylic acid with multiple and diverse functions in humans and plants. In plants this compound was suggested as a marker for lipid peroxidation under biotic and abiotic stress conditions and an inducer (priming agent) of plant immunity (acquired resistance). Detection methods for AzA in plants include a wide range of methodological approaches.
View Article and Find Full Text PDFSulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. This review attempts to recapitulate results on the various functions of sulfur-containing defense compounds (SDCs) in plant defense responses to pathogens. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide.
View Article and Find Full Text PDFFvatfA from the maize pathogen Fusarium verticillioides putatively encodes the Aspergillus nidulans AtfA and Schizasaccharomyces pombe Atf1 orthologous bZIP-type transcription factor, FvAtfA. In this study, a ΔFvatfA deletion mutant was constructed and then genetically complemented with the fully functional FvatfA gene. Comparing phenotypic features of the wild-type parental, the deletion mutant and the restored strains shed light on the versatile regulatory functions played by FvAtfA in (i) the maintenance of vegetative growth on Czapek-Dox and Potato Dextrose agars and invasive growth on unwounded tomato fruits, (ii) the preservation of conidiospore yield and size, (iii) the orchestration of oxidative (HO, menadione sodium bisulphite) and cell wall integrity (Congo Red) stress defences and (iv) the regulation of mycotoxin (fumonisins) and pigment (bikaverin, carotenoid) productions.
View Article and Find Full Text PDFSystemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip).
View Article and Find Full Text PDFStress sensitivity of three related phytopathogenic Fusarium species (Fusarium graminearum, Fusarium oxysporum and Fusarium verticillioides) to different oxidative, osmotic, cell wall, membrane, fungicide stressors and an antifungal protein (PAF) were studied in vitro. The most prominent and significant differences were found in oxidative stress tolerance: all the three F. graminearum strains showed much higher sensitivity to hydrogen peroxide and, to a lesser extent, to menadione than the other two species.
View Article and Find Full Text PDFThe ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes.
View Article and Find Full Text PDFFilamentous ascomycetes, including mitotic holomorphs, have constitutively transcribed MAT (mating type) genes. These genes encode transcription factors considered to be the major regulators of sexual communication. The proven targets of the MAT transcription factors are pheromone precursor and pheromone receptor genes.
View Article and Find Full Text PDFTime-lapse video microscopy was designed to follow the movement of single cells for an unlimited period of time under physiological conditions. The system is based on two inverted microscopes located in a CO(2) incubator and equipped with charge-coupled device cameras connected to the computer. Frames were recorded every minute and the subsequent video sequence was converted to database form.
View Article and Find Full Text PDFA homologue of the adenylyl cyclase (AC) gene of Neurospora crassa, named Fpacy1 was cloned from the genomic library of Fusarium proliferatum ITEM 2287 by screening the library with a DNA fragment amplified by using PCR primers designed from conserved sequences of the catalytic domain of AC genes from other fungi. The deduced FPACY1 protein had 53-77% identity with the AC proteins of other fungi. DeltaFpacy1 mutants obtained by targeted gene disruption showed retarded vegetative growth, increased conidiation and delayed conidial germination.
View Article and Find Full Text PDFDuring cultivation of a wild type strain of Fusarium proliferatum on ammonium dihydrogen phosphate containing defined medium, expression levels of FUM1 and FUM8, members of the fumonisin biosynthesis gene cluster significantly increased when ammonium ion concentration of the culture medium decreased below 10 mM, indicating that N-depletion triggers the fumonisin biosynthesis genes. Deletion of Fphog1, a HOG-type MAP kinase gene resulted in further increases in FUM1 and FUM8 expression under nitrogen starvation (absence of any N-source) conditions. Fumonisin B1 (FB1) production paralleled with increased FUM gene expression: significant amounts of FB1 were measured in culture filtrates of the DeltaFphog1 deleted mutant after five days culturing, whereas only traces of FB1 could be detected in filtrates of the wild type and the restored strain (R1) complemented with the wild-type Fphog1-24 gene.
View Article and Find Full Text PDFDelta Fphog1 mutants of Fusarium proliferatum obtained by targeted gene disruption of Fphog1, an orthologue of the Saccharomyces cerevisiae hog1 MAPK gene showed increased sensitivity towards different abiotic stressors including UV-irradiation, heat, salt, osmotic and hydrogen peroxide treatments. Incubation of the Delta Fphog1 mutants under hyperosmotic conditions was accompanied with prolonged growth arrest, inhibition of conidial germination, morphological abnormalities and time-dependent increase of the cell death rate. The wild type Fphog1 gene, under the control of its own promoter, was able to rescue the multistress sensitivity of the mutant strain.
View Article and Find Full Text PDF