Publications by authors named "Attila Konya"

Herein we compared 40 mg/mL lots of the active ingredient, glatiramer acetate, manufactured by Mylan/Natco to the active ingredient, glatiramer acetate in Copaxone (Teva Pharmaceuticals, Ltd., Netanya Israel) using physicochemical (PCC) methods and biological assays. No differences were seen between the Mylan/Natco and Teva lots with some low resolution release PCC assays (amino acid analysis, molecular weight distribution, interaction with Coomassie Brilliant Blue G-250).

View Article and Find Full Text PDF

Copaxone (glatiramer acetate, GA), a structurally and compositionally complex polypeptide nonbiological drug, is an effective treatment for multiple sclerosis, with a well-established favorable safety profile. The short antigenic polypeptide sequences comprising therapeutically active epitopes in GA cannot be deciphered with state-of-the-art methods; and GA has no measurable pharmacokinetic profile and no validated pharmacodynamic markers. The study reported herein describes the use of orthogonal standard and high-resolution physicochemical and biological tests to characterize GA and a U.

View Article and Find Full Text PDF

Glatiramer acetate (Copaxone®; GA) is a non-biological complex drug for multiple sclerosis. GA modulated thousands of genes in genome-wide expression studies conducted in THP-1 cells and mouse splenocytes. Comparing GA with differently-manufactured glatiramoid Polimunol (Synthon) in mice yielded hundreds of differentially expressed probesets, including biologically-relevant genes (e.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is a model for human multiple sclerosis (MS) in rodents. Static magnetic field (SMF)-exposure was shown to be beneficial in specific cases of inflammatory background, where it suppresses symptoms. The null-hypothesis was that animals with induced EAE exposed to SMF would show different seriousness of symptoms, than those in the sham-exposed control group.

View Article and Find Full Text PDF

The discovery of immunosuppressant compounds created the conditions for the successful transplantations. Effective immunosuppressant compounds were isolated from cultures of different microorganisms, among others macrolide type immunosuppressants, FK506 and FK520, were isolated from the fermentation broths of Streptomyces species. In this study a screening program was carried out to isolate microorganisms, which produce macrolide type immunosuppressant compounds.

View Article and Find Full Text PDF

Primycin is a macrolide antibiotic complex produced in microbiological fermentation processes. The microbial production of primycin requires an in-process analytical method suitable for monitoring the level of the active agents. In this paper, a method fulfilling the described requirement is presented.

View Article and Find Full Text PDF

Integration of the pCG79 temperature-sensitive plasmid carrying Tn611 was used to generate libraries of mutants with blocked sterol-transforming ability of the sterol-utilizing strains Mycobacterium smegmatis mc(2)155 and Mycobacterium phlei M51-Ept. Of the 10,000 insertional mutants screened from each library, 4 strains with altered activity of the sterol-degrading enzymes were identified. A blocked 4-androstene-3,17-dione-producing M.

View Article and Find Full Text PDF

The MDR1 transporter mediated efflux of different xenobiotics out of the cells serves as the most important mechanisms of the multidrug resistance in cancer cells, thus inhibition of the MDR1 transporter may increase the efficiency of anticancer drugs in the therapy. Here we describe some new phenothiazine derivatives, which possess strong in vitro MDR1 inhibitory activity. The effectiveness of the compounds on the MDR1 mediated calcein-AM efflux, ATPase activity, and colchicine resistance was proven by microplate assays and flow cytometry using recombinant and control cell lines.

View Article and Find Full Text PDF