Publications by authors named "Attila Gabor"

Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) remains the main reason for drug development attritions largely due to poor mechanistic understanding. Toxicogenomic to interrogate the mechanism of DILI has been broadly performed. Gene coregulation network-based transcriptome analysis is a bioinformatics approach that potentially contributes to improve mechanistic interpretation of toxicogenomic data.

View Article and Find Full Text PDF

The advancement of highly multiplexed spatial technologies requires scalable methods that can leverage spatial information. We present MISTy, a flexible, scalable, and explainable machine learning framework for extracting relationships from any spatial omics data, from dozens to thousands of measured markers. MISTy builds multiple views focusing on different spatial or functional contexts to dissect different effects.

View Article and Find Full Text PDF

Recent technological developments allow us to measure the status of dozens of proteins in individual cells. This opens the way to understand the heterogeneity of complex multi-signaling networks across cells and cell types, with important implications to understand and treat diseases such as cancer. These technologies are, however, limited to proteins for which antibodies are available and are fairly costly, making predictions of new markers and of existing markers under new conditions a valuable alternative.

View Article and Find Full Text PDF

5-Fluorouracil (5-FU) is a widely used chemotherapeutical that induces acute toxicity in the small and large intestine of patients. Symptoms can be severe and lead to the interruption of cancer treatments. However, there is limited understanding of the molecular mechanisms underlying 5-FU-induced intestinal toxicity.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is the most prevalent adversity encountered in drug development and clinical settings leading to urgent needs to understand the underlying mechanisms. In this study, we have systematically investigated the dynamics of the activation of cellular stress response pathways and cell death outcomes upon exposure of a panel of liver toxicants using live cell imaging of fluorescent reporter cell lines. We established a comprehensive temporal dynamic response profile of a large set of BAC-GFP HepG2 cell lines representing the following components of stress signaling: i) unfolded protein response (UPR) [ATF4, XBP1, BIP and CHOP]; ii) oxidative stress [NRF2, SRXN1, HMOX1]; iii) DNA damage [P53, P21, BTG2, MDM2]; and iv) NF-κB pathway [A20, ICAM1].

View Article and Find Full Text PDF

One goal of precision medicine is to tailor effective treatments to patients' specific molecular markers of disease. Here, we used mass cytometry to characterize the single-cell signaling landscapes of 62 breast cancer cell lines and five lines from healthy tissue. We quantified 34 markers in each cell line upon stimulation by the growth factor EGF in the presence or absence of five kinase inhibitors.

View Article and Find Full Text PDF

Molecular knowledge of biological processes is a cornerstone in omics data analysis. Applied to single-cell data, such analyses provide mechanistic insights into individual cells and their interactions. However, knowledge of intercellular communication is scarce, scattered across resources, and not linked to intracellular processes.

View Article and Find Full Text PDF

Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets.

View Article and Find Full Text PDF

Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage.

View Article and Find Full Text PDF

Summary: The molecular changes induced by perturbations such as drugs and ligands are highly informative of the intracellular wiring. Our capacity to generate large datasets is increasing steadily. A useful way to extract mechanistic insight from the data is by integrating them with a prior knowledge network of signalling to obtain dynamic models.

View Article and Find Full Text PDF

Summary: Multiple databases provide valuable information about curated pathways and other resources that can be used to build and analyze networks. OmniPath combines 61 (and continuously growing) network resources into a comprehensive collection, with over 120 000 interactions. We present here the OmniPath App, a Cytoscape plugin to flexibly import data from OmniPath via a simple and intuitive interface.

View Article and Find Full Text PDF

Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner.

View Article and Find Full Text PDF

Background: Kinetic models of biochemical systems usually consist of ordinary differential equations that have many unknown parameters. Some of these parameters are often practically unidentifiable, that is, their values cannot be uniquely determined from the available data. Possible causes are lack of influence on the measured outputs, interdependence among parameters, and poor data quality.

View Article and Find Full Text PDF

Motivation: Many problems of interest in dynamic modeling and control of biological systems can be posed as non-linear optimization problems subject to algebraic and dynamic constraints. In the context of modeling, this is the case of, e.g.

View Article and Find Full Text PDF

Background: Dynamic modelling provides a systematic framework to understand function in biological systems. Parameter estimation in nonlinear dynamic models remains a very challenging inverse problem due to its nonconvexity and ill-conditioning. Associated issues like overfitting and local solutions are usually not properly addressed in the systems biology literature despite their importance.

View Article and Find Full Text PDF