Macrophytes often live in fluvial backwaters that have a variety of hydrological connections to a main river. Since the ability of these plants to adapt to changing environments may depend on the genetic diversity of the populations, it is important to know whether it can be influenced by habitat characteristics. We examined the microsatellite polymorphism of the submerged macrophyte from various backwaters and showed that the genetic diversity of this plant clearly reflects habitat hydrological differences.
View Article and Find Full Text PDFUrban rivers are exposed to an increasing load of organic micropollutants from wastewater effluent posing an ecological as well as public health hazard. One-off surveys can capture a snapshot of the pollution profile but fail to reveal the full scale of spatial and temporal heterogeneity. In the present study, 41 micropollutants (non-steroid anti-inflammatory drugs (NSAID), antihypertensives, antiepileptic, antidiabetic, antibiotics, iodinated contrast media (ICM), corrosion inhibitors, pesticides) were monitored every two weeks for one-year upstream and downstream of the Budapest metropolitan area in Danube River (336 samples total).
View Article and Find Full Text PDFThe adaptability of plant populations to a changing environment depends on their genetic diversity, which in turn is influenced by the degree of sexual reproduction and gene flow from distant areas. Aquatic macrophytes can reproduce both sexually and asexually, and their reproductive fragments are spread in various ways (e.g.
View Article and Find Full Text PDFThe detection of non-point pollution in large rivers requires high-frequency sampling over a longer period of time, which, however presumably provides data with large spatial and temporal variance. Variability may mean that data sets recorded upstream and downstream from a densely populated area overlap, suggesting at first glance that the urban area did not affect water quality. This study presents a simple way to explore trend-like effects of non-point pollution in the Danube based on data that varied strongly in space and time.
View Article and Find Full Text PDFIn freshwaters, microbial communities are of outstanding importance both from ecological and public health perspectives, however, they are threatened by the impact of global warming. To reveal how different prokaryotic communities in a large temperate river respond to environment conditions related to climate change, the present study provides the first detailed insight into the composition and spatial and year-round temporal variations of planktonic and epilithic prokaryotic community. Microbial diversity was studied using high-throughput next generation amplicon sequencing.
View Article and Find Full Text PDFSubmersed macrophytes accumulate large amounts of macro- and trace elements from the environment and, therefore, are frequently used as indicators of water pollution and tools to remove pollutants from contaminated waters. This study provides evidences that the quantity of macro- and trace elements accumulated in the macrophyte Ceratophyllum demersum depends strongly on the seasonality, on the vertical position of the plant material and on the biofilm cover. Element contents of macrophytes with and without biofilm cover and that of vertical plant sections were investigated by an ICP-MS technique in three different habitats, at the beginning and at the end of the vegetation period.
View Article and Find Full Text PDFStat Appl Genet Mol Biol
July 2009
Procedures are currently available for the evaluation of hierarchical classifications of produce tree dissimilarities or consensus dendrograms. Some tests of cluster validity operate by comparing all possible partitions from a tree with a reference partition. We propose an exhaustive search procedure to compare all partitions from one dendrogram with all partitions derived from the other to detect hierarchical levels at which the two dendrograms show maximum agreement.
View Article and Find Full Text PDF