Publications by authors named "Attila Bacsi"

Article Synopsis
  • The endocannabinoid system (ECS) is a crucial regulatory network involved in skin health and immune response, with endocannabinoids like anandamide showing anti-inflammatory properties.
  • Research focused on understanding the relationship between monocyte-derived Langerhans cells (moLCs) and the ECS, particularly how endocannabinoids influence immune responses and inflammation in skin cells.
  • Methodologically, human monocytes were differentiated into moLCs with anandamide, revealing that while it didn't significantly impact cell viability, it had minor effects on specific cell markers and influenced T cell responses through gene expression analysis.
View Article and Find Full Text PDF

Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs.

View Article and Find Full Text PDF

Urbanization with reduced microbial exposure is associated with an increased burden of asthma and atopic symptoms. Conversely, environmental exposure to endotoxins in childhood can protect against the development of allergies. Our study aimed to investigate whether the renaturation of the indoor environment with aerosolized radiation-detoxified lipopolysaccharide (RD-LPS) has a preventative effect against the development of ragweed-induced Th-type airway inflammation.

View Article and Find Full Text PDF

Ginger has been used for thousands of years for the treatment of many illnesses, from nausea to migraines. Recently, an interest has grown in ginger compounds in the context of autoimmune and inflammatory diseases due to their significant anti-inflammatory effects. Nevertheless, the effects and mechanism of action of these phytochemicals in human immune cells, particularly in dendritic cells (DCs) are unclear.

View Article and Find Full Text PDF

Introduction: Extracts and compounds isolated from hemp (Cannabis sativa) are increasingly gaining popularity in the treatment of a number of diseases, with topical formulations for dermatological conditions leading the way. Phytocannabinoids such as ( )-cannabidiol, ( )-cannabinol and ( )-Δ9-tetrahydrocannabivarin (CBD, CBN, and THCV, respectively), are present in variable amounts in the plant, and have been shown to have mostly anti-inflammatory effects both in vitro and in vivo, albeit dominantly in murine models. The role of phytocannabinoids in regulating responses of dendritic cells (DCs) remains unclear.

View Article and Find Full Text PDF

Autoantibodies targeting the lung tissue were identified in severe COVID-19 patients in this retrospective study. Fifty-three percent of 104 patients developed anti-pulmonary antibodies, the majority of which were IgM class, suggesting that they developed upon infection with SARS-CoV-2. Anti-pulmonary antibodies correlated with worse pulmonary function and a higher risk of multiorgan failure that was further aggravated if 3 or more autoantibody clones were simultaneously present (multi-producers).

View Article and Find Full Text PDF

Recent advances have uncovered the non-random distribution of 7, 8-dihydro-8-oxoguanine (8-oxoGua) induced by reactive oxygen species, which is believed to have epigenetic effects. Its cognate repair protein, 8-oxoguanine DNA glycosylase 1 (OGG1), reads oxidative substrates and participates in transcriptional initiation. When redox signaling is activated in small airway epithelial cells, the DNA repair function of OGG1 is repurposed to transmit acute inflammatory signals accompanied by cell state transitions and modification of the extracellular matrix.

View Article and Find Full Text PDF

Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. Activated transcription factors in conjunction with chromatin remodelers induce epigenetic changes that reprogram IFN responses. Unexpectedly, 8-oxoguanine DNA glycosylase1 (Ogg1) knockout mice show enhanced stimuli-driven IFN expression that confers increased resistance to viral and bacterial infections and allergen challenges.

View Article and Find Full Text PDF

N,N-dimethylglycine (DMG) is a naturally occurring compound being widely used as an oral supplement to improve growth and physical performance. Thus far, its effects on human skin have not been described in the literature. For the first time, we show that N,N-dimethylglycine sodium salt (DMG-Na) promoted the proliferation of cultured human epidermal HaCaT keratinocytes.

View Article and Find Full Text PDF

Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules.

View Article and Find Full Text PDF

As part of the antiviral response, cells activate the expressions of type I interferons (IFNs) and proinflammatory mediators to control viral spreading. Viral infections can impact DNA integrity; however, how DNA damage repair coordinates antiviral response remains elusive. Here we report Nei-like DNA glycosylase 2 (NEIL2), a transcription-coupled DNA repair protein, actively recognizes the oxidative DNA substrates induced by respiratory syncytial virus (RSV) infection to set the threshold of IFN-β expression.

View Article and Find Full Text PDF

Immune responses are highly complex and intricately regulated processes involving immune and non-immune cells in close direct and indirect contact with each other. These cells are highly sensitive to environmental signals, including factors derived from microbiota. Here, we demonstrate that the human microbiota member ()-derived cell-free supernatant (CFS) enhances the sensitivity of mesenchymal-stromal-cell-like (MSCI) cells to viral stimuli and induces the development of dendritic cells (DCs) with anti-inflammatory and antiviral properties via pretreated MSCl cells.

View Article and Find Full Text PDF
Article Synopsis
  • Macrophages play a key role in regulating blood vessel formation, especially during the later stages of angiogenesis, but the mechanisms behind this process are still not fully understood.
  • Research reveals that IL-4 can affect the balance of the VEGFA-VEGFR1 axis in macrophages by inhibiting proangiogenic signals while promoting antiangiogenic ones, thereby reducing their proangiogenic activity.
  • This regulation is linked to specific signaling pathways and transcription factors and is consistent across different types of macrophages, indicating that IL-4 influences their response to both oxygen availability and angiogenesis.
View Article and Find Full Text PDF

During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution.

View Article and Find Full Text PDF

Langerhans cells (LCs) are the sole professional antigen-presenting cell normally found in the human epidermal compartment. Research into their physiological role is hindered by the fact that they are invariably activated during isolation from the skin. To overcome this challenge, we turned to a monocyte-derived LC (moLC) model, which we characterized with RNA sequencing, and compared the transcriptome of moLCs with that of donor-matched immature dendritic cells.

View Article and Find Full Text PDF

Macrophages and dendritic cells (DCs) are important contributors to anti-tumor immune responses. However, these highly plastic cells are also the primary targets of tumor manipulation, which may result in the development of tumor-promoting subtypes. The effect of chemotherapeutic agents on tumor cells is an area of intense study, but little is known about their effects on innate immune cells.

View Article and Find Full Text PDF

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure.

View Article and Find Full Text PDF

Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1β pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1β secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1β pathway and its possible interaction with the type I IFN pathway in pDCs.

View Article and Find Full Text PDF

The vast majority of studies focusing on the effects of endurance exercise on hematological parameters and leukocyte gene expression were performed in adult men, so our aim was to investigate these changes in young females. Four young (age 15.3 ± 1.

View Article and Find Full Text PDF

Developing dendritic cells (DCs) from monocytes is a sensitively regulated process. One possible way for cancers to avoid immune recognition and antitumor response is the modulation of DC differentiation. Although several studies are available on the examination of tumor-associated macrophages, a comprehensive analysis focusing on the effects of tumor-formed DCs is not known to date.

View Article and Find Full Text PDF

Severe cases of COVID-19 are characterized by an inflammatory burst, which is accompanied by multiorgan failure. The elderly population has higher risk for severe or fatal outcome for COVID-19. Inflammatory mediators facilitate the immune system to combat viral infection by producing antibodies against viral antigens.

View Article and Find Full Text PDF

The human gut symbiont (previously ) is under intense research due to its wide range of immunomodulatory effects on the human host. Dendritic cells (DCs) are crucial players in the direct and indirect communication with lactobacilli in the gastrointestinal tract. Here, we demonstrate that human monocyte-derived DCs (moDCs) are able to engulf BL23, in which the intact bacterial cell wall and morphology have a key role.

View Article and Find Full Text PDF

Lycopene as the main carotenoid from tomatoes is known to have beneficial effects on various inflammatory diseases. In mice, lycopene ameliorates asthma symptoms and in human asthmatic patients serum lycopene levels are reduced. To further investigate the immunomodulatory effect of lycopene, first, we used a ragweed pollen extract (RWE)-induced asthma model in mice.

View Article and Find Full Text PDF

The primary cause of morbidity and mortality from infection with respiratory syncytial virus (RSV) is the excessive innate immune response(s) (IIR) in which reactive oxygen species (ROS) play key role(s). However, the mechanisms for these processes are not fully understood. We hypothesized that expressions of IIR genes are controlled by the ROS-generated epigenetic-like mark 7,8-dihydro-8-oxo(d)guanine (8-oxo(d)Gua) and 8-oxoguanine DNA glycosylase1 (OGG1).

View Article and Find Full Text PDF