Hydrogels are promising scaffolds for tissue regeneration, and borosilicate glass particles have demonstrated potential in enhancing the biological behaviour of dental pulp cells. However, the specific morphological characteristics of dental lesions and the diverse requirements of dental tissues require biocompatible, bioactive, and shapeable scaffolds. This study aimed to evaluate the in vitro biological behaviour of human gingival fibroblasts (HGFs) in contact with an experimental aluminum-free borosilicate glass-functionalized hydrogel.
View Article and Find Full Text PDFThe World Health Organization (WHO) has prioritized developing new drugs against specific bacteria and fungi, such as and spp. While is commonly called the "cure-everything", its scientifically proven benefits are limited to anti-inflammatory and antioxidant actions. Therefore, this study aims to determine the spectrum of antimicrobial activity of and assess its cytotoxicity.
View Article and Find Full Text PDFIntroduction: In recent years, restorative dentistry has embraced various techniques, including direct, semi-direct, and indirect restorations, to address the replacement of lost tooth tissue. The focus has been on integrating the principles of Biomechanics, Bioactivity, and Biomimicry (3-Bio) as key drivers behind these innovations.
Methods: The aim of this article is to provide a concise overview of three important aspects of restorative dental materials: biomechanics, bioactivity and biomimetics.
While most of current models investigating bone remodelling are based on matrix deformation, intramedullary pressure also plays a role. Bone remodelling is orchestrated by the Lacuno-Canalicular Network (LCN) fluid-flow. The aim of this review was hence to assess the influence of intramedullary pressure on the fluid circulation within the LCN.
View Article and Find Full Text PDFObjectives: New bioactive materials were introduced to not only restore the lost dental hard tissue but also to release fluoride that inhibits demineralization and occurrence of secondary caries. The current study thus aims to assess Fluoride release as well as the mechanical and physical properties of two new commercially available bioactive restorative materials.
Methods: Two materials, Cention® Forte (CF) (Ivoclar Vivadent), Surefil one™ (SO) (Denstply Sirona), were evaluated in terms of fracture toughness (FT), flexural strength (FS), flexural modulus (FM) (ISO 4049), compressive strength (CS), and Vickers hardness (VH).
In order to enhance and promote tissue repair and healing processes, current exploratory and investigative research lines in medical and dental treatments are focusing on the use of bioactive materials that are able to induce and trigger a specific targeted biological activity to stimulate the suitable response from the host tissue [...
View Article and Find Full Text PDFMultiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical applications. In this context, direct-writing electrospinning (DWE) represents a promising and rapid technique for developing thin 3D scaffolds with controlled architecture.
View Article and Find Full Text PDFWhile periodontal ligament cells are sensitive to their 3D biomechanical environment, only a few 3D in vitro models have been used to investigate the periodontal cells mechanobiological behavior. The objective of the current study was to assess the capability of a 3D fibrous scaffold to transmit a mechanical loading to the periodontal ligament cells. Three-dimensional fibrous polycaprolactone (PCL) scaffolds were synthetized through electrospinning.
View Article and Find Full Text PDFA relevant alternative to enamel matrix derivatives from animal origin could be the use of synthetic amelogenin-derived peptides. This study aimed to assess the effect of a synthetic amelogenin-derived peptide (ADP-5), alone or included in an experimental gellan-xanthan hydrogel, on periodontal cell behavior (gingival fibroblasts, periodontal ligament cells, osteoblasts and cementoblasts). The effect of ADP-5 (50, 100, and 200 µg/mL) on cell metabolic activity was examined using Alamar blue assay, and cell morphology was assessed by confocal imaging.
View Article and Find Full Text PDFThe current study aimed to assess the topographical and physical properties of a minimally invasive implant (MagiCore®: MC®, InnosBioSurg, IBS) and to evaluate its biological behavior compared to a gold standard implant (NobelParallel™: NB™, Nobel Biocare™). After surface characterization, the biological behavior assessment was conducted regarding human gingival fibroblasts (hGF) and osteoblast-like cells (MG63). Roughness values for NBTM were Ra = 1.
View Article and Find Full Text PDFAim: To assess in vitro the effect of two novel phase separated borosilicate glasses (PSBS) in the system SiO -B O -K O-CaO-Al O on dental pulp cells; and to compare their bioactivity and mechanical properties to a conventional fluoroaluminosilicate glass ionomer cement namely FUJI IX.
Methodology: The cytocompatibility assessment of the two novel borosilicate glasses, one without alumina (PSBS8) and one containing alumina (PSBS16), was performed on cultured primary human pulp cells. Alamar blue assay was used to assess cell metabolic activity and cell morphology was evaluated by confocal imaging.
Objective: To evaluate in vitro the mechanical, biological, and polymerization behavior of a flowable bulk-fill composite with fibers as a dispersed phase.
Methods: EverX Flow™ (GC Corporation) (EXF), one conventional bulk-fill composite (Filtek™ Bulk Fill Posterior Restorative, 3 M (FBF)), and one flowable bulk composite without fibers (SDR® flow+, Dentsply (SDR)) were tested. Samples were characterized in terms of flexural strength (ISO 4049), fracture toughness (ISO 20795-1), and Vickers hardness.
Aim This systematic review aimed to critically summarise the results of clinical studies investigating agents able to: stop the progression of carious lesions; stop the development of new root carious lesions; preserve the vitality of the infected dental tissues; and increase the surface hardness or change of surface texture, in middle-age and older adults.Methods PubMed, Scopus, and Web of Science were searched systematically, following PRISMA guidelines. Clinical trials published from 2011 to 2020 (March) were included.
View Article and Find Full Text PDFPurpose: To investigate the relationship between the microstructure of CAD/CAM blocks and the quality of adhesion as function of the surface treatment and resin cement type.
Materials And Methods: Two nano-ceramic composite resin CAD/CAM blocks, Lava Ultimate (LU) and Cerasmart (CS), and two Leucite-reinforced glass ceramic CAD/CAM IPS blocks, Empress CAD (EM) and Initial LRF (IR), received either Hydrofluoric acid (HF) or sandblasting (SB) surface treatments. The blocks were then luted using two dual-cure resin cements, LinkForce (LF) and Multilink Automix (ML) with their corresponding silanes, resulting in 16 study groups.
Thanks to their high porosity and surface area, mesoporous bioactive glasses (MBGs) have gained significant interest in the field of medical applications, in particular, with regards to enhanced bioactive properties which facilitate bone regeneration. The aim of this article is to review the state of the art regarding the biocompatibility evaluation of MBGs and provide a discussion of the various approaches taken. The research was performed using PubMed database and covered articles published in the last five years.
View Article and Find Full Text PDFThe periodontal biomechanical environment is very difficult to investigate. By the complex geometry and composition of the periodontal ligament (PDL), its mechanical behavior is very dependent on the type of loading (compressive versus tensile loading; static versus cyclic loading; uniaxial versus multiaxial) and the location around the root (cervical, middle, or apical). These different aspects of the PDL make it difficult to develop a functional biomaterial to treat periodontal attachment due to periodontal diseases.
View Article and Find Full Text PDFObjectives: To assess in vitro the effect of experimental mesoporous BAG, on human dental pulp cells (hDPCs) behavior in terms of cytocompatiblity and bioactivity via mineralization potential.
Methods: Fine (FP) and large particles (LP) of a fixed BAG composition named 0NaMBG have been elaborated by a sol-gel process. In vitro assessment was achieved on cultured primary hDPCs using indirect contact.
Objective: In the context of minimally invasive dentistry and tissue conservation, bioactive products are valuable. The aim of this review was to identify, clarify, and classify the methodologies used to quantify the bioactive glasses bioactivity.
Methods: Specific search strategies were performed in electronic databases: PubMed, Embase, Cochrane Library, and Scopus.
Objective: To assess the impact of the quaternary ammonium antibacterial agent, Dimethyl-Hexadecyl-Methacryloxyethyl-Ammonium Iodide (DHMAI), on structural stability of an experimental resin composite after biological aging.
Methods: Experimental resin composites containing 7.5% of DHMAI were incubated in a biological medium in the presence of a Streptococcus Mutans (SM) strain during 3 months.
Reference data are lacking on the periodontal ligament and the gingival tissue of the rat model, which would be useful for studies of new medical or biomaterial periodontal treatments. The objective of the current study was to propose cellular and collagen reference values of gingival and periodontal ligament tissues in rat, using a simple and reliable quantitative method after decalcification. Mandibular samples of ten adult Sprague-Dawley rats were used.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2019
Due to their osteoconductive and osteoinductive abilities, bioglasses (BGs) have attracted attention in tissue engineering, especially for mineralized tissue. The aim of this study is to review the current state of the art on the effects of BGs produced by sol-gel on cells for dental and periodontal regeneration. The study also discusses associated antibacterial properties.
View Article and Find Full Text PDFPhosphate-based glasses have been attracting attention due to their possible medical applications arising from unique dissolution characteristics in the human body leading to the possibility of new tissue regeneration. In this study, the leaching kinetics of a series of melt-quenched Sr-doped phosphate glasses are presented. Regardless of the presence of Sr, all the glasses have an initial linear and sustained release of the ions followed by a plateau.
View Article and Find Full Text PDFObjective: The superior textural properties of sol-gel derived bioactive glasses compared to conventional melt quench glasses accounts for their accelerated bioactivity in vitro. Several studies have explored ways to improve the surface properties of sol-gel glasses in order to maximise their efficiency for bone and tooth regeneration. In this study, we investigated the effect of order of network modifying precursor addition on the textural properties of sol-gel derived bioactive glasses.
View Article and Find Full Text PDFThe paradigm shift brought about by the expansion of tissue engineering and regenerative medicine away from the use of biomaterials, currently questions the value of histopathologic methods in the evaluation of biological changes. To date, the available tools of evaluation are not fully consistent and satisfactory for these advanced therapies. We have developed a new, simple and inexpensive quantitative digital approach that provides key metrics for structural and compositional characterization of the regenerated tissues.
View Article and Find Full Text PDF