Publications by authors named "Atticus Pinzon-Rodriguez"

Cryptochromes (CRY) have been proposed as putative magnetoreceptors in vertebrates. Localisation of CRY1 in the UV cones in the retinas of birds suggested that it could be the candidate magnetoreceptor. However, recent findings argue against this possibility.

View Article and Find Full Text PDF

The light-dependent magnetic compass of birds provides orientation information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina, and be mediated by a light-induced, biochemical radical-pair mechanism involving cryptochromes as putative receptor molecules. At the same time, cryptochromes are known for their role in the negative feedback loop in the circadian clock.

View Article and Find Full Text PDF

Birds have a light-dependent magnetic compass that provides information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina and mediated by a light-induced, radical-pair mechanism involving cryptochromes as sensory receptor molecules. To investigate how the behavioural responses of birds under different light spectra match with cryptochromes as the primary magnetoreceptor, we examined the spectral properties of the magnetic compass in zebra finches.

View Article and Find Full Text PDF

Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized.

View Article and Find Full Text PDF