Publications by authors named "Atthaphon Viriyopase"

Networks of neurons can generate oscillatory activity as result of various types of coupling that lead to synchronization. A prominent type of oscillatory activity is gamma (30-80 Hz) rhythms, which may play an important role in neuronal information processing. Two mechanisms have mainly been proposed for their generation: (1) interneuron network gamma (ING) and (2) pyramidal-interneuron network gamma (PING).

View Article and Find Full Text PDF
Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

Oscillations of neuronal activity in different frequency ranges are thought to reflect important aspects of cortical network dynamics. Here we investigate how various mechanisms that contribute to oscillations in neuronal networks may interact. We focus on networks with inhibitory, excitatory, and electrical synapses, where the subnetwork of inhibitory interneurons alone can generate interneuron gamma (ING) oscillations and the interactions between interneurons and pyramidal cells allow for pyramidal-interneuron gamma (PING) oscillations.

View Article and Find Full Text PDF

Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14-30 and 40-80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding.

View Article and Find Full Text PDF