Publications by authors named "Atteeq Rehman"

Article Synopsis
  • Proteinuric kidney diseases, particularly focal segmental glomerulosclerosis (FSGS), are difficult to diagnose and manage, and genetic testing is often too late for timely action.
  • A study was conducted on 10 patients with FSGS or minimal change disease to see if rapid genome sequencing (GS) could be incorporated into standard nephrology appointments, achieving an average result turnaround of 21.8 days.
  • Results showed that GS helped diagnose genetic forms of kidney disease in half the patients, changed treatment plans, and improved transplant evaluation, indicating that real-time GS can enhance outpatient kidney care, though more research is needed on its broader benefits and costs.
View Article and Find Full Text PDF

Background: Rapid genome sequencing (rGS) has been shown to improve care of critically ill infants. Congenital heart disease (CHD) is a leading cause of infant mortality and is often caused by genetic disorders, yet the utility of rGS has not been prospectively studied in this population.

Methods: We conducted a prospective evaluation of rGS to improve the care of infants with complex CHD in our cardiac neonatal intensive care unit.

View Article and Find Full Text PDF

Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact.

View Article and Find Full Text PDF

Purpose: Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions.

Methods: Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing.

View Article and Find Full Text PDF

Purpose: Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions.

Methods: Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing.

View Article and Find Full Text PDF

The increased use of next-generation sequencing has expanded our understanding of the involvement and prevalence of mosaicism in genetic disorders. We describe a total of eleven cases: nine in which mosaic variants detected by genome sequencing (GS) and/or targeted gene panels (TGPs) were considered to be causative for the proband's phenotype, and two of apparent parental mosaicism. Variants were identified in the following genes: PHACTR1, SCN8A, KCNT1, CDKL5, NEXMIF, CUX1, TSC2, GABRB2, and SMARCB1.

View Article and Find Full Text PDF

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices.

View Article and Find Full Text PDF

We report here a de novo missense variant in HIST1H4J resulting in a complex syndrome combining growth delay, microcephaly and intellectual disability. Trio whole exome sequencing (WES) revealed that the proband was heterozygous for a de novo c.274 A > G p.

View Article and Find Full Text PDF

In the version of this article initially published, the Acknowledgements erroneously included a grant number that did not directly support the work in the article. The last sentence of the Acknowledgments should have read, "The authors' laboratories were supported by National Natural Science Foundation of China grants 31671222 and 31571556 (G.D.

View Article and Find Full Text PDF

TRIOBP remodels the cytoskeleton by forming unusually dense F-actin bundles and is implicated in human cancer, schizophrenia, and deafness. Mutations ablating human and mouse TRIOBP-4 and TRIOBP-5 isoforms are associated with profound deafness, as inner ear mechanosensory hair cells degenerate after stereocilia rootlets fail to develop. However, the mechanisms regulating formation of stereocilia rootlets by each TRIOBP isoform remain unknown.

View Article and Find Full Text PDF

Nuclear receptor corepressor 1 (NCOR1) and NCOR2 (also known as SMRT) regulate gene expression by activating histone deacetylase 3 through their deacetylase activation domain (DAD). We show that mice with DAD knock-in mutations have memory deficits, reduced anxiety levels, and reduced social interactions. Mice with NCOR1 and NORC2 depletion specifically in GABAergic neurons (NS-V mice) recapitulated the memory deficits and had reduced GABA receptor subunit α2 (GABRA2) expression in lateral hypothalamus GABAergic (LH) neurons.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) has been instrumental in solving the genetic basis of rare inherited diseases, especially neurodevelopmental syndromes. However, functional workup is essential for precise phenotype definition and to understand the underlying disease mechanisms. Using whole exome (WES) and whole genome sequencing (WGS) in four independent families with hypotonia, neurodevelopmental delay, facial dysmorphism, loss of white matter, and thinning of the corpus callosum, we identified four previously unreported homozygous truncating PPP1R21 alleles: c.

View Article and Find Full Text PDF

KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel-complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange-Nielson syndrome (JLNS1 and JLNS2), a cardio-auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death.

View Article and Find Full Text PDF

Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.

View Article and Find Full Text PDF

Hearing and balance depend upon the precise morphogenesis and mechanosensory function of stereocilia, the specialized structures on the apical surface of sensory hair cells in the inner ear. Previous studies of Grxcr1 mutant mice indicated a critical role for this gene in control of stereocilia dimensions during development. In this study, we analyzed expression of the paralog Grxcr2 in the mouse and evaluated auditory and vestibular function of strains carrying targeted mutations of the gene.

View Article and Find Full Text PDF
Article Synopsis
  • REST is a DNA-binding protein that interacts with histone deacetylases (HDACs) to silence neuronal genes in non-neuronal cells, and its downregulation is primarily due to transcriptional silencing in differentiating neurons.
  • The study highlights the importance of post-transcriptional regulation through alternative splicing of REST, which is crucial for hearing in both humans and mice, especially in the hair cells of the ear.
  • A mutation affecting alternative splicing of REST leads to hair cell degeneration and deafness in mice, but treatment with an HDAC inhibitor can restore hearing; this mechanism is also linked to a hereditary form of deafness in humans.
View Article and Find Full Text PDF

The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) regulate assembly of macromolecular complexes, yet remain challenging to study within the native cytoplasm where they normally exert their biological effect. Here we miniaturize the concept of affinity pulldown, a gold-standard in vitro PPI interrogation technique, to perform nanoscale pulldowns (NanoSPDs) within living cells. NanoSPD hijacks the normal process of intracellular trafficking by myosin motors to forcibly pull fluorescently tagged protein complexes along filopodial actin filaments.

View Article and Find Full Text PDF

The genetic underpinnings of recessively inherited moderate to severe sensorineural hearing loss are not well understood, despite its higher prevalence in comparison to profound deafness. We recruited 92 consanguineous families segregating stable or progressive, recessively inherited moderate or severe hearing loss. We utilized homozygosity mapping, Sanger sequencing, targeted capture of known deafness genes with massively parallel sequencing and whole exome sequencing to identify the molecular basis of hearing loss in these families.

View Article and Find Full Text PDF

Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal-recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here.

View Article and Find Full Text PDF

TMC1 encodes a protein required for the normal function of mechanically activated channels that enable sensory transduction in auditory and vestibular hair cells. TMC1 protein is localized at the tips of the hair cell stereocilia, the site of conventional mechanotransduction. In many populations, loss-of-function recessive mutations of TMC1 are associated with profound deafness across all frequencies tested.

View Article and Find Full Text PDF

The sphingosine-1-phosphate receptors (S1PRs) are a well-studied class of transmembrane G protein-coupled sphingolipid receptors that mediate multiple cellular processes. However, S1PRs have not been previously reported to be involved in the genetic etiology of human traits. S1PR2 lies within the autosomal-recessive nonsyndromic hearing impairment (ARNSHI) locus DFNB68 on 19p13.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) of exomes and genomes has accelerated the identification of genes involved in Mendelian phenotypes. However, many NGS studies fall short of identifying causal variants, with estimates for success rates as low as 25% for uncovering the pathological variant underlying disease etiology. An important reason for such failures is familial locus heterogeneity, where within a single pedigree causal variants in two or more genes underlie Mendelian trait etiology.

View Article and Find Full Text PDF

Purpose: Progressive decline of psychophysical cone-mediated measures has been reported in type 1 (USH1) and type 2 (USH2) Usher syndrome. Conventional cone electroretinogram (ERG) responses in USH demonstrate poor signal-to-noise ratio. We evaluated cone signals in USH1 and USH2 by recording microvolt level cycle-by-cycle (CxC) ERG.

View Article and Find Full Text PDF

Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness.

View Article and Find Full Text PDF