Publications by authors named "Attardo G"

This study examines the phenotypic differences between wild-derived F2 Central Valley mosquitoes and the insecticide-susceptible Rockefeller (Rock) lab strain of . Given the rarity of wild pyrethroid-susceptible populations, the focus of this work is to develop an understanding of the resistance physiology in this invasive mosquito population and explore the potential of metabolites as diagnostic biomarkers for metabolic resistance. This study utilizes metabolomic, gene expression, and lifespan data for a comparison between strains.

View Article and Find Full Text PDF

Mosquitoes transmit pathogens that pose a threat to millions of people globally. Unfortunately, widespread insecticide resistance makes it difficult to control these public health pests. General mechanisms of resistance, such as target site mutations or increased metabolic activity, are well established.

View Article and Find Full Text PDF

Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism.

View Article and Find Full Text PDF

Insecticide resistance is a multifaceted response and an issue across taxa. Aedes aegypti, the mosquito that vectors Zika, dengue, chikungunya, and yellow fever, demonstrates high levels of pyrethroid resistance across the globe, presenting a challenge to public health officials. To examine the transcriptomic shifts across time after exposure to permethrin, a 3'Tag-Seq analysis was employed on samples 6, 10, and 24 h after exposure along with controls.

View Article and Find Full Text PDF

Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts.

View Article and Find Full Text PDF

Lipid metabolism is critical for insect reproduction, especially for species that invest heavily in the early developmental stages of their offspring. The role of symbiotic bacteria during this process is understudied but likely essential. We examined the role of lipid metabolism during the interaction between the viviparous tsetse fly () and its obligate endosymbiotic bacteria () during tsetse pregnancy.

View Article and Find Full Text PDF

The ingestion of blood represents a significant burden that immediately increases water, oxidative, and thermal stress, but provides a significant nutrient source to generate resources necessary for the development of progeny. Thermal stress has been assumed to solely be a negative byproduct that has to be alleviated to prevent stress. Here, we examined if the short thermal bouts incurred during a warm blood meal are beneficial to reproduction.

View Article and Find Full Text PDF

Background: Glossina species (tsetse flies), the sole vectors of African trypanosomes, maintained along their long evolutionary history a unique reproductive strategy, adenotrophic viviparity. Viviparity reduces their reproductive rate and, as such, imposes strong selective pressures on males for reproductive success. These species live in sub-Saharan Africa, where the distributions of the main sub-genera Fusca, Morsitans, and Palpalis are restricted to forest, savannah, and riverine habitats, respectively.

View Article and Find Full Text PDF

Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera.

View Article and Find Full Text PDF

The fat body is considered the insect analog of vertebrate liver and fat tissue. In mosquitoes, a blood meal triggers a series of processes in the fat body that culminate in vitellogenesis, the process of yolk formation. Lipids are stored in the fat body in specialized organelles called lipid droplets that change in size depending on the nutritional and metabolic status of the insect.

View Article and Find Full Text PDF

Analysis of short-term results regarding dimensional stability of post-extraction sockets managed via a preservation protocol using deproteinized bovine bone matrix and a xenogeneic collagen matrix. Materials and methods Fifteen patients needing extraction of one single-rooted premolar tooth were treated in a pilot study. Five patients were treated in each centre.

View Article and Find Full Text PDF

Background: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies.

View Article and Find Full Text PDF

Background: Since their detection in 2013, Aedes aegypti has become a widespread urban pest in California. The availability of cryptic larval breeding sites in residential areas and resistance to insecticides pose significant challenges to control efforts. Resistance to pyrethroids is largely attributed to mutations in the voltage gated sodium channels (VGSC), the pyrethroid site of action.

View Article and Find Full Text PDF

Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology.

View Article and Find Full Text PDF

The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition.

View Article and Find Full Text PDF

Rapid and significant range expansion of both the Zika virus (ZIKV) and its vector species has resulted in the declaration of ZIKV as a global health threat. Successful transmission of ZIKV by its vector requires a complex series of interactions between these entities including the establishment, replication and dissemination of the virus within the mosquito. The metabolic conditions within the mosquito tissues play a critical role in mediating the crucial processes of viral infection and replication and represent targets for prevention of virus transmission.

View Article and Find Full Text PDF

Tsetse flies (genus ), the sole vectors of African trypanosomiasis, are distinct from most other insects, due to dramatic morphological and physiological adaptations required to support their unique biology. These adaptations are driven by demands associated with obligate hematophagy and viviparous reproduction. Obligate viviparity entails intrauterine larval development and the provision of maternal nutrients for the developing larvae.

View Article and Find Full Text PDF

Background: the mosquito () is an important vector of arboviruses, including Zika, Dengue, and Chikungunya. The dietary requirements of larval are not well understood and likely impact developmental and physiological parameters knowledge of which could be important for vector control. This study examines the effects nutrition has on growth and development of larval of laboratory-reared Rockefeller strain mosquitoes.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the prognostic value of a non-invasive sampling procedure based on 13-gene DNA methylation analysis in the follow-up of patients previously treated for oral squamous cell carcinoma (OSCC).

Methods: The study population included 49 consecutive patients treated for OSCC. Oral brushing sample collection was performed at two different times: before any cancer treatment in the tumor mass and during patient follow-up almost 6 months after OSCC treatment, within the regenerative area after OSCC resection.

View Article and Find Full Text PDF
Article Synopsis
  • Tsetse flies, which are found in sub-Saharan Africa, transmit diseases in humans and animals and have unique traits like lactation and live births, prompting genomic studies across different species.
  • Genomic analyses align with known evolutionary relationships, revealing distinct patterns in gene expression between sexes and unique adaptations in their lifestyle, such as specialized genes for lactation and rapidly evolving male proteins.
  • The findings enhance our understanding of tsetse fly biology, aiding in vector control and informing strategies for pest and disease management.
View Article and Find Full Text PDF