Publications by authors named "Attaccalite C"

Hybrid van der Waals heterostructures made of 2D materials and organic molecules exploit the high sensitivity of 2D materials to all interfacial modifications and the inherent versatility of the organic compounds. In this study, we are interested in the quinoidal zwitterion/MoS hybrid system in which organic crystals are grown by epitaxy on the MoS surface and reorganize in another polymorph after thermal annealing. By means of field-effect transistor measurements recorded all along the process, atomic force microscopy and density functional theory calculations we demonstrate that the charge transfer between quinoidal zwitterions and MoS strongly depends on the conformation of the molecular film.

View Article and Find Full Text PDF

The study of intra and interlayer excitons in 2D semiconducting vdW heterostructures is a very hot topic not only from a fundamental but also an applicative point of view. Due to their strong light-matter interaction, Transition Metal Dichalcogenides (TMD) and group-III nitrides are particularly attractive in the field of opto-electronic applications such as photo-catalytic and photo-voltaic ultra-thin and flexible devices. Using first-principles ground and excited-state simulations, we investigate here the electronic and excitonic properties of a representative nitride/TMD heterobilayer, the AlN/WS2.

View Article and Find Full Text PDF

Dihydrotetraazapentacene (DHTAP) molecules can be dehydrogenated on the surface to form tetraazapentacene (TAP), by applying a high electric field between the tip of a scanning tunnelling microscope (STM) and a metallic substrate in the zero-current limit. The method can be applied either to single molecules or more extended layers by successively scanning a selected area using an STM tip.

View Article and Find Full Text PDF

In this work, we study the structural and electronic properties of boron nitride bilayers sandwiched between graphene sheets. Different stacking, twist angles, doping, as well as an applied external gate voltage, are reported to induce important changes in the electronic band structure near the Fermi level. Small electronic lateral gaps of the order of few meV can appear near the Dirac points K.

View Article and Find Full Text PDF

The pressure dependence of the direct and indirect bandgap transitions of hexagonal boron nitride is investigated using optical reflectance under hydrostatic pressure in an anvil cell with sapphire windows up to 2.5 GPa. Features in the reflectance spectra associated with the absorption at the direct and indirect bandgap transitions are found to downshift with increasing pressure, with pressure coefficients of -26 ± 2 and -36 ± 2 meV GPa, respectively.

View Article and Find Full Text PDF

During the past years, one of the most iconic metal-organic frameworks (MOFs), MOF-5, has been characterized as a semiconductor by theory and experiments. Here we employ the many-body perturbation theory in conjunction with the Bethe-Salpeter equation to compute the electronic structure and optical properties of this MOF. The calculations show that MOF-5 is a wide-band-gap insulator with a fundamental gap of ∼8 eV.

View Article and Find Full Text PDF

TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.

View Article and Find Full Text PDF

yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo's capabilities include the calculation of linear response quantities (both independent-particle and including electron-hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities.

View Article and Find Full Text PDF

We calculated the frequency dependent macroscopic dielectric function and second-harmonic generation of cubic ZnS, ZnSe and ZnTe within time-dependent density-polarisation functional theory. The macroscopic dielectric function is calculated in a linear response framework, and second-harmonic generation in a real-time framework. The macroscopic exchange-correlation electric field that enters the time-dependent Kohn-Sham equations and accounts for long range correlation is approximated as a simple polarisation functional αP, where P is the macroscopic polarisation.

View Article and Find Full Text PDF

The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional hexagonal crystals is calculated by using a real-time first-principles approach based on Green's function theory [Attaccalite et al., Phys. Rev.

View Article and Find Full Text PDF

Many-body Green's function perturbation theories, such as the GW and Bethe-Salpeter formalisms, are starting to be routinely applied to study charged and neutral electronic excitations in molecular organic systems relevant to applications in photovoltaics, photochemistry or biology. In parallel, density functional theory and its time-dependent extensions significantly progressed along the line of range-separated hybrid functionals within the generalized Kohn-Sham formalism designed to provide correct excitation energies. We give an overview and compare these approaches with examples drawn from the study of gas phase organic systems such as fullerenes, porphyrins, bacteriochlorophylls or nucleobases molecules.

View Article and Find Full Text PDF

We study within the many-body Green's function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at the self-consistent level, updating first the quasiparticle energies, and further the single-particle wavefunctions within the static Coulomb-hole plus screened-exchange approximation to the GW self-energy operator. Important level crossings, as compared to the starting Kohn-Sham LDA spectrum, are identified.

View Article and Find Full Text PDF

Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised.

View Article and Find Full Text PDF
Article Synopsis
  • The optical properties of graphane are primarily influenced by localized charge-transfer excitations resulting from increased electron correlations in a 2D dielectric environment.
  • Strong interactions between electrons and holes create small radius bound excitons, with the electron and hole being spatially separated—one localized out of plane and the other in plane.
  • This discovery of bound excitons suggests the possibility of achieving an excitonic Bose-Einstein condensate in graphane, which may be experimentally observable.
View Article and Find Full Text PDF

We present a new way to tune the electron-phonon coupling (EPC) in graphene by changing the deformation potential with electron/hole doping. We show the EPC for highest optical branch at the high symmetry point K acquires a strong dependency on the doping level due to electron-electron correlation not accounted in mean-field approaches. Such a dependency influences the dispersion (with respect to the laser energy) of the Raman D and 2D lines and the splitting of the 2D peak in multilayer graphene.

View Article and Find Full Text PDF

We introduce an efficient scheme for the molecular dynamics of electronic systems by means of quantum Monte Carlo. The evaluation of the (Born-Oppenheimer) forces acting on the ionic positions is achieved by two main ingredients: (i) the forces are computed with finite and small variance, which allows the simulation of a large number of atoms, (ii) the statistical noise corresponding to the forces is used to drive the dynamics at finite temperature by means of an appropriate Langevin dynamics. A first application to the high-density phase of hydrogen is given, supporting the stability of the liquid phase at approximately 300 GPa and approximately 400 K.

View Article and Find Full Text PDF

The full three-dimensional dispersion of the pi bands, Fermi velocities, and effective masses are measured with angle-resolved photoemission spectroscopy and compared to first-principles calculations. The band structure by density-functional theory underestimates the slope of the bands and the trigonal warping effect. Including electron-electron correlation on the level of the GW approximation, however, yields remarkable improvement in the vicinity of the Fermi level.

View Article and Find Full Text PDF

We show that a simple correlated wave function, obtained by applying a Jastrow correlation term to an antisymmetrized geminal power, based upon singlet pairs between electrons, is particularly suited for describing the electronic structure of molecules, yielding a large amount of the correlation energy. The remarkable feature of this approach is that, in principle, several resonating valence bonds can be dealt simultaneously with a single determinant, at a computational cost growing with the number of electrons similar to more conventional methods, such as Hartree-Fock or density functional theory. Moreover we describe an extension of the stochastic reconfiguration method, which was recently introduced for the energy minimization of simple atomic wave functions.

View Article and Find Full Text PDF

The ground-state energy of the two-dimensional uniform electron gas has been calculated with a fixed-node diffusion Monte Carlo method, including backflow correlations, for a wide range of electron densities as a function of spin polarization. We give a simple analytic representation of the correlation energy which fits our simulation data and includes several known high- and low-density limits. This parametrization provides a reliable local spin density energy functional for two-dimensional systems and an estimate for the spin susceptibility.

View Article and Find Full Text PDF