Polarization-entangled photons are indispensable to numerous quantum technologies and fundamental studies. In this paper, we propose and demonstrate what we believe to be a novel source that generates collinear polarization-entangled photons by simultaneously achieving two distinct types of phase-matching conditions (noncritically birefringent and quasi phase matching) in a periodically poled nonlinear crystal with a large poling period of 2 mm. The photon pairs are generated in a polarization-entangled state with a fidelity and concurrence of 0.
View Article and Find Full Text PDFHigh photostability is a desirable property of fluorescent proteins (FPs) for imaging, yet its molecular basis is poorly understood. We performed ultrafast spectroscopy on TagRFP and its 9-fold more photostable variant TagRFP-T (TagRFP S158T) to characterize their initial photoreactions. We find significant differences in their electronic and vibrational dynamics, including faster excited-state proton transfer and transient changes in the frequency of the mode in the excited electronic state of TagRFP-T.
View Article and Find Full Text PDFThe energy transfer (ET) between organic molecules and semiconductors is a crucial mechanism for enhancing the performance of semiconductor-based optoelectronic devices, but it remains undiscovered. Here, ultrafast optical pump-probe spectroscopy was utilized to directly reveal the ET between organic Alq molecules and Si semiconductors. Ultrathin SiO dielectric layers with a thickness of 3.
View Article and Find Full Text PDFTHz waves have been intensively applied in many fields, e.g., spectroscopy, imaging, and communications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
A complete temperature-dependent scheme of the Mn on-site d-d transitions in multiferroic hexagonal HoMnO (-HoMnO) thin films was unveiled by energy-resolved ultrafast spectroscopy. The results unambiguously revealed that the ultrafast responses of the and states differed significantly in the hexagonal HoMnO. We demonstrated that the short-range antiferromagnetic and ferroelectric orderings are more relevant to the state, whereas the long-range antiferromagnetic ordering is intimately coupled to both the and states.
View Article and Find Full Text PDFIn contrast to the 2D organic-inorganic hybrid Ruddlesden-Popper halide perovskites (RPP), a new class of 2D all inorganic RPP (IRPP) has been recently proposed by substituting the organic spacers with an optimal inorganic alternative of cesium cations (Cs ). Nevertheless, the synthesis of high-membered 2D IRPPs (n > 1) has been a very challenging task because the Cs need to act as both spacers and A-site cations simultaneously. This work presents the successful synthesis of stable phase-pure high-membered 2D IRPPs of Cs Pb Br nanosheets (NSs) with n = 3 and 4 by employing the strategy of using additional strong binding bidentate ligands.
View Article and Find Full Text PDFThe primary reaction mechanism of cytochrome (Cyt ) was elucidated for two redox forms of ferric (oxidized) and ferrous (reduced) Cyt by measuring their transient absorption (TA) spectra using a homemade sub-10 fs broadband NUV laser pulses system. The TA traces measured in the broad probe wavelength region were analyzed by the global analysis method to study the electronic dynamics. The difference of relaxation dynamics dependent on the excitation bandwidth enabled us to elucidate that the 2.
View Article and Find Full Text PDFCompound crystallization is typically achieved from supersaturated solutions over time, through melting, or via sublimation. Here a new method to generate a single crystal of thioglucoside using a sub-10-fs pulse laser is presented. By focusing the laser pulse on a solution in a glass cell, a single crystal is deposited at the edge of the ceiling of the glass cell.
View Article and Find Full Text PDFIn this report, the substitution of the oxygen group (=O) of Tetraphenylcyclopentadienone with =CR group (R = methyl ester or nitrile) was found to have tuned the electro-optical properties of the molecule. Although both groups are electrons withdrawing in nature, their absorption from UV-vis spectra analysis was observed to have been blue-shifted by methyl ester substitution and red-shifted by nitrile substitution. Interestingly, these substitutions helped to enhance the overall intensity of emission, especially in the context of methyl ester substitution whereby the emission was significantly boosted at higher concentrations due to hypothesized restrictions of intramolecular motions.
View Article and Find Full Text PDFSolution-processed organic photovoltaics (OPVs) based on bulk-heterojunctions have gained significant attention to alleviate the increasing demend of fossil fuel in the past two decades. OPVs combined of a wide bandgap polymer donor and a narrow bandgap nonfullerene acceptor show potential to achieve high performance. However, there are still two reasons to limit the OPVs performance.
View Article and Find Full Text PDFThe inherent instability of UV-induced degradation in TiO-based perovskite solar cells was largely improved by replacing the anatase-phase compact TiO layer with an atomic sheet transport layer (ASTL) of two-dimensional (2D) TiO. The vital role of microscopic carrier dynamics that govern the UV stability of perovskite solar cells was comprehensively examined in this work by performing time-resolved pump-probe spectroscopy. In conventional perovskite solar cells, the presence of a UV-active oxygen vacancy in compact TiO prohibits current generation by heavily trapping electrons after UV degradation.
View Article and Find Full Text PDFIn this study, we investigated the ultrafast dynamics of bacteriorhodopsins (BRs) from Haloquadratum walsbyi (HwBR) and Haloarcula marismortui (HmBRI and HmBRII). First, the ultrafast dynamics were studied for three HwBR samples: wild-type, D93N mutation, and D104N mutation. The residues of the D93 and D104 mutants correspond to the control by the Schiff base proton acceptor and donor of the proton translocation subchannels.
View Article and Find Full Text PDFTransient process spectroscopy has previously been thought to be applicable only to the analysis of intra-molecular processes. Two metal ion bridges used in the present work have allowed us to visualize real-time variations of the molecular vibration frequencies during photo-disproportionation inside bimolecule aggregates, which directly shows transient inter-molecular reactions.
View Article and Find Full Text PDFSingle 9.6 fs deep ultraviolet pulses with a spectral range of 255-290 nm are generated by a chirped-pulse four-wave mixing technique for use as pump and probe pulses. The electronic excited state and vibrational dynamics are simultaneously observed for an aqueous solution of uracil and thymine over the full spectral range using a 128-channel lock-in amplifier detector.
View Article and Find Full Text PDFUltrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in <300fs, then followed by vibrational cooling and recombination within 2ps. Such impulsive bond breaking and late rebinding generate proteinquakes, which relaxes in several tens of picoseconds.
View Article and Find Full Text PDFQuantum correlations between spatially separated parts of a d-dimensional bipartite system (d ≥ 2) have no classical analog. Such correlations, also called entanglements, are not only conceptually important, but also have a profound impact on information science. In theory the violation of Bell inequalities based on local realistic theories for d-dimensional systems provides evidence of quantum nonlocality.
View Article and Find Full Text PDFIn this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR.
View Article and Find Full Text PDFThe organic solar cells of heterojunction system, ITO/PEDOT:PSS/P3HT:PCBM/Al, with a thermal annealing after deposition of Al exhibit better performance than those with an annealing process before deposition of Al. In this study, ultrafast time-resolved spectroscopy is employed to reveal the underlying mechanism of annealing effects on the performance of P3HT:PCBM solar cell devices. The analyses of all decomposed relaxation processes show that the postannealed devices exhibit an increase in charge transfer, in the number of separated polarons and a reduction in the amount of recombination between excited carriers.
View Article and Find Full Text PDFCarrier-envelope phase (CEP) of single-cycle pulses generated through two-color filamentation has been investigated. We have observed a particular behavior of the phase: the phase of high-frequency components of the generated pulses changes continuously and linearly with the relative phase between the two-color input pulses, whereas the phase of the low-frequency components takes only two discrete values. The transition of the phase behavior has been clearly observed by using frequency-resolved optical gating capable of CEP determination.
View Article and Find Full Text PDFThe inherent valley-contrasting optical selection rules for interband transitions at the K and K' valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work.
View Article and Find Full Text PDFWe have successfully demonstrated a great advantage of plasmonic Au nanoparticles for efficient enhancement of Cu(In,Ga)Se2(CIGS) flexible photovoltaic devices. The incorporation of Au NPs can eliminate obstacles in the way of developing ink-printing CIGS flexible thin film photovoltaics (TFPV), such as poor absorption at wavelengths in the high intensity region of solar spectrum, and that occurs significantly at large incident angle of solar irradiation. The enhancement of external quantum efficiency and photocurrent have been systematically analyzed via the calculated electromagnetic field distribution.
View Article and Find Full Text PDFWe report on a Laser Induced Breakdown Spectroscopy (LIBS) system with a very high temporal resolution, using femtosecond and picosecond pulse laser excitation of pure aluminum (Al). By using a 140 fs Ti:Sapphire laser in an ultrafast optical Kerr gate (OKG), we demonstrate LIBS sampling with a sub-ps time resolution (0.8 ± 0.
View Article and Find Full Text PDFImpulsive excitation of molecular vibration is known to induce wave packets in both the ground state and excited state. Here, the ultrafast dynamics of PYP was studied by pump-probe spectroscopy using a sub-8 fs pulse laser at 400 nm. The broadband spectrum of the UV pulse allowed us to detect the pump-probe signal covering 360-440 nm.
View Article and Find Full Text PDFChemical bond breaking and formation during chemical reactions can be observed using "transition state spectroscopy". Comparing the measurement result of the transition state spectroscopy with the simulation result of single direct-dynamics trajectory, we have elucidated the reaction dynamics of Claisen rearrangement of allyl vinyl ether. Observed the reaction of the neat sample liquid, we have estimated the time constants of transformation from straight-chain structure to aromatic-like six-membered ring structure forming the C¹-C⁶ bond.
View Article and Find Full Text PDF