Publications by authors named "Atsushi Tsuchida"

To improve cell production efficacy, it is important to evaluate cell conditions during culture. Extracellular vesicles (EVs) secreted from various cells are involved in stem cell differentiation. As EVs carry information about their source cells, we hypothesized that they may serve as a noninvasive index of cell conditions.

View Article and Find Full Text PDF

Starting with a subtle blood glucose-lowering effect of a TGF-β inhibitor, we designed and synthesized a series of benzoylpyrrole-based carboxylic acids as PPARs activators. Among these compounds, 10sNa exhibited favorable blood glucose-lowering effect without body weight gain. We assume that the beneficial effect of 10sNa is attributed to not only its compound PPARα agonistic activity but also its PPARγ partial agonistic activity.

View Article and Find Full Text PDF

Apolipoprotein E (apoE) and its receptor, very low density lipoprotein receptor (VLDLR), are involved in fat accumulation in adipocytes. Here, we investigated the effect of a peroxisome proliferator-activated receptor (PPAR) gamma agonist, rosiglitazone, on regulation of VLDLR expression both in white adipose tissue (WAT) of obese mice and in cultured adipocytes. Furthermore, to determine whether rosiglitazone directly regulates transcription of the VLDLR gene, we carried out luciferase assay with a reporter gene containing mouse VLDLR promoter region, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay.

View Article and Find Full Text PDF

We previously reported that peripheral injection of brain-derived neurotrophic factor (BDNF) exhibits hypophagic and hypoglycemic effects in obese hyperglycemic animals, indicating its antiobesity and antidiabetic effects. Since previous studies were focused on the effect of BDNF on overt diabetic animals with severe hyperglycemia, there was no evidence whether BDNF is effective or not for the development of diabetes in prediabetic animal models. Therefore, we evaluated the effect of BDNF on preventing the development of diabetes in db/db mice.

View Article and Find Full Text PDF

We previously demonstrated that repetitive administration of brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and energy expenditure in obese diabetic db/db mice. However, we have not evaluated in detail the effect of single or intermittent BDNF administration on glucose metabolism in a diabetic animal model. The objectives of this study were to examine the dose-response effect and dosing interval of BDNF administration in db/db mice and to evaluate the effect of intermittent BDNF administration on pancreatic function in db/db mice.

View Article and Find Full Text PDF

Adiponectin has been shown to stimulate fatty acid oxidation and enhance insulin sensitivity through the activation of AMP-activated protein kinase (AMPK) in the peripheral tissues. The effects of adiponectin in the central nervous system, however, are still poorly understood. Here, we show that adiponectin enhances AMPK activity in the arcuate hypothalamus (ARH) via its receptor AdipoR1 to stimulate food intake; this stimulation of food intake by adiponectin was attenuated by dominant-negative AMPK expression in the ARH.

View Article and Find Full Text PDF

Adiponectin is an adipocyte-derived hormone and known to form several species of multimer, however, the precise components of each multimer have not been fully determined. We purified each multimer adiponectin selectively from human plasma and characterized them by affinity columns using anti-adiponectin, gelatin, or anti-albumin antibody and gel filtration. We found that adiponectin exists as four species of multimers in human plasma.

View Article and Find Full Text PDF

Adiponectin plays a central role as an antidiabetic and antiatherogenic adipokine. AdipoR1 and AdipoR2 serve as receptors for adiponectin in vitro, and their reduction in obesity seems to be correlated with reduced adiponectin sensitivity. Here we show that adenovirus-mediated expression of AdipoR1 and R2 in the liver of Lepr(-/-) mice increased AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor (PPAR)-alpha signaling pathways, respectively.

View Article and Find Full Text PDF

We have previously demonstrated that brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and energy expenditure in obese diabetic db/db mice. In the present study, the effect of BDNF treatment on pancreatic islets of db/db mice was examined, using vehicle-treated pair-fed db/db mice as controls. Brain-derived neurotrophic factor (10 mg/kg) or vehicle was subcutaneously administered to male db/db mice for 4 weeks.

View Article and Find Full Text PDF

We examined the effects of activation of peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, and both of them in combination in obese diabetic KKAy mice and investigated the mechanisms by which they improve insulin sensitivity. PPARalpha activation by its agonist, Wy-14,643, as well as PPARgamma activation by its agonist, rosiglitazone, markedly improved insulin sensitivity. Interestingly, dual activation of PPARalpha and -gamma by a combination of Wy-14,643 and rosiglitazone showed increased efficacy.

View Article and Find Full Text PDF

Obesity is defined as increased mass of adipose tissue, conferring a higher risk of cardiovascular and metabolic disorders such as diabetes, hyperlipidemia, and coronary heart disease. To investigate the role of transcriptional factors, which are involved in adipocytes differentiation and adiposity, we have generated peroxisome proliferator-activated receptor (PPAR) gamma or CREB-binding protein (CBP)-deficient mice by gene targeting. Heterozygous PPARgamma-deficient mice were protected from the development of insulin resistance due to adipocyte hypertrophy under a high-fat diet.

View Article and Find Full Text PDF

Previous studies revealed that carboxyl-terminal fragment containing the globular domain of adiponectin exists in human plasma. Although it is proposed that the globular fragment is generated by proteolytic cleavage, the place and responsible enzyme of the cleavage are still unclear. In this study, we evaluated the activity to cleave adiponectin in culture medium of several cell lines in vitro.

View Article and Find Full Text PDF

Adiponectin/Acrp30 is a hormone secreted by adipocytes, which acts as an antidiabetic and antiatherogenic adipokine. We reported previously that AdipoR1 and -R2 serve as receptors for adiponectin and mediate increased fatty acid oxidation and glucose uptake by adiponectin. In the present study, we examined the expression levels and roles of AdipoR1/R2 in several physiological and pathophysiological states such as fasting/refeeding, obesity, and insulin resistance.

View Article and Find Full Text PDF

Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) enhances proliferation of renal epithelial cells as well as hepatocytes. HGF accelerates recovery from acute renal failure (ARF) in animal models. However, pharmacological profiles of HGF including its action mechanism has not been studied in detail.

View Article and Find Full Text PDF