This study investigates computational models of electric field strength for transcranial magnetic stimulation (TMS) of the left dorsolateral prefrontal cortex (DLPFC) based on individual MRI data of patients with schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder (BP), and healthy controls (HC). In addition, it explores the association of electric field intensities with age, gender and intracranial volume. The subjects were 23 SZ (12 male, mean age = 45.
View Article and Find Full Text PDFIntroduction: The dynamics of large-scale networks, which are known as distributed sets of functionally synchronized brain regions and include the visual network (VIN), somatomotor network (SMN), dorsal attention network (DAN), salience network (SAN), limbic network (LIN), frontoparietal network (FPN), and default mode network (DMN), play important roles in emotional and cognitive processes in humans. Although disruptions in these large-scale networks are considered critical for the pathophysiological mechanisms of psychiatric disorders, their role in psychiatric disorders remains unknown. We aimed to elucidate the aberrant dynamics across large-scale networks in patients with schizophrenia (SZ) and mood disorders.
View Article and Find Full Text PDFCognitive impairment in schizophrenia and other psychiatric disorders is a challenge to be overcome in order to maintain patients' quality of life and social function. The neurological pathogenesis of cognitive impairment requires further elucidation. In general, the hippocampus interacts between the cortical and subcortical areas for information processing and consolidation and has an important role in memory.
View Article and Find Full Text PDFThis cross-diagnostic study aims to computationally model electric field (efield) for prefrontal transcranial direct current stimulation in mood disorders and schizophrenia. Enrolled were patients with major depressive disorder (n = 23), bipolar disorder (n = 24), schizophrenia (n = 23), and healthy controls (n = 23). The efield was simulated using SimNIBS software (ver.
View Article and Find Full Text PDFIntroduction: The hippocampus is relevant to cognitive function in schizophrenia (SCZ) and mood disorder patients. Although not anatomically uniform, it is clearly divided into subfields. This study aimed to elucidate the relationship between hippocampal subfield volume and cognitive function in patients with SCZ, bipolar disorder (BP), and major depressive disorder (MDD).
View Article and Find Full Text PDF