Differentiated cell nuclei can be reprogrammed after nuclear transfer (NT) to oocytes and the produced NT embryos can give rise to cloned animals. However, development of NT embryos is often hampered by recurrent reprogramming failures, including the incomplete activation of developmental genes, yet specific genes responsible for the arrest of NT embryos are not well understood. Here, we searched for developmentally important genes among the reprogramming-resistant H3K9me3-repressed genes and identified and by siRNA screening.
View Article and Find Full Text PDFAfter fertilization, sperm and oocyte nuclei are rapidly remodeled to form swollen pronuclei (PN) in mammalian zygotes, and the proper formation and function of PN are key to producing totipotent zygotes. However, how mature PN are formed has been unclear. We find that filamentous actin (F-actin) assembles in the PN of mouse zygotes and is required for fully functional PN.
View Article and Find Full Text PDF