Gold nanoparticles have unique optical properties such as surface-plasmon and photothermal effects. Such properties have resulted in gold nanoparticles having several clinical applications. Gold nanorods (which are rod-shaped gold nanoparticles) show a surface plasmon band in the near-infrared region.
View Article and Find Full Text PDFGold nanorods, rod-shaped gold nanoparticles, have strong absorbance in the near-infrared region, and the absorbed light energy can be converted to heat, the so-called photothermal effect. The gold nanorods were coated with thermoresponsive polymers, which have different phase transition temperatures that were controlled by adding comonomers, N,N-dimethylacrylamide (DMAA) or acrylamide (AAm) to N-isopropylacrylamide (NIPAM). The phase transition temperatures of poly(NIPAM-DMAA) and poly(NIPAM-AAm)-coated gold nanorods were 38 and 41 °C, respectively, while polyNIPAM-coated gold nanorods showed phase transition at 34 °C.
View Article and Find Full Text PDFIn this study, we prepared gold nanorod (NR)-embedded N-isopropylacrylamide (NIPAM) hydrogels and studied their volume phase transition behavior induced by near-infrared (near-IR) laser irradiation utilizing the photothermal conversion characteristics of the NRs. When poly(ethylene glycol)-modified NRs were used for the preparation of composite gels, the NRs showed marked dispersion stability in the gel. Near-IR laser irradiation of the gel (cylindrical shape, diameter = 140 microm) under the following conditions, NR concentrations in the gel > or =100 microM and laser irradiation power > or =490 mW, resulted in shrinkage of the gel in the following manner: (1) waist formation around the irradiation spot and (2) growth of the waist along the axial directions of the gel.
View Article and Find Full Text PDF