An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFIntroduction: Screening compounds for activity on the hERG channel using patch clamp is a crucial part of safety testing. Automated patch clamp (APC) is becoming widely accepted as an alternative to manual patch clamp in order to increase throughput whilst maintaining data quality. In order to standardize APC experiments, we have investigated the effects on IC values under different conditions using several devices across multiple sites.
View Article and Find Full Text PDFAutomated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin.
View Article and Find Full Text PDFWe have developed an automated patch clamp module for high-throughput ion channel screening, recording from 384 cells simultaneously. The module is incorporated into a laboratory pipetting robot and uses a 384-channel pipettor head for application of cells and compounds. The module contains 384 amplifier channels for fully parallel recordings using a digital amplifier.
View Article and Find Full Text PDFBackground: An in vitro electrophysiological assay system, which can assess compound effects and thus show cardiotoxicity including arrhythmia risks of test drugs, is an essential method in the field of drug development and toxicology.
Methods: In this study, high-throughput electrophysiological recordings of human embryonic kidney (HEK 293) cells and Chinese hamster ovary (CHO) cells stably expressing human ether-a-go-go related gene (hERG) were performed utilizing an automated 384-well-patch-clamp system, which records up to 384 cells simultaneously. hERG channel inhibition, which is closely related to a drug-induced QT prolongation and is increasing the risk of sudden cardiac death, was investigated in the high-throughput screening patch-clamp system.
The effects of terfenadine and pentamidine on the human ether-a-go-go related gene (hERG) channel current and its intracellular trafficking were evaluated. Green fluorescent protein (GFP)-linked hERG channels were expressed in HEK293 cells, and the membrane current was measured by an automated whole cell voltage clamp system. To evaluate drug effects on channel trafficking to the cell membrane, the fraction of channel present on the cell membrane was quantified by current measurement after drug washout and confocal microscopy.
View Article and Find Full Text PDFCloperastine is an antitussive drug, which can be received as an over-the-counter cold medicine. The chemical structure of cloperastine is quite similar to that of the antihistamine drug diphenhydramine, which is reported to inhibit hERG K⁺ channels and clinically induce long QT syndrome after overdose. To analyze its proarrhythmic potential, we compared effects of cloperastine and diphenhydramine on the hERG K⁺ channels expressed in HEK293 cells.
View Article and Find Full Text PDF