A single-celled fertilized egg develops into a complex, multicellular animal through a series of selection processes of developmental pathways. During these processes, regulatory genes exhibit spatiotemporally restricted expression under the control of the species-specific genetic program, and dictate developmental processes from germ layer formation to cellular differentiation. Elucidation of molecular mechanisms underlying developmental processes and also of mechanistic bases for morphological diversification during evolution is one of the central issues in contemporary developmental biology.
View Article and Find Full Text PDFIn the anterior foregut (AFG) of mouse embryos, the transcription factor SOX2 is expressed in the epithelia of the esophagus and proximal branches of respiratory organs comprising the trachea and bronchi, whereas NKX2.1 is expressed only in the epithelia of respiratory organs. Previous studies using hypomorphic alleles have indicated that reduced SOX2 expression causes the esophageal epithelium to display some respiratory organ characteristics.
View Article and Find Full Text PDFThe differentiation of primordial germ cells (PGCs) is a fundamental step in development. PR domain-containing protein 14 (PRDM14) and B lymphocyte-induced maturation protein 1 (BLIMP1) play pivotal roles in mouse PGC specification. In the present study, we assessed the roles of chicken orthologs of PRDM14 and BLIMP1 in PGC development.
View Article and Find Full Text PDFTo elucidate the role of Hox genes in limb cartilage development, we identified the target genes of HOXA11 and HOXA13 by ChIP-Seq. The ChIP DNA fragment contained evolutionarily conserved sequences and multiple highly conserved HOX binding sites. A substantial portion of the HOXA11 ChIP fragment overlapped with the HOXA13 ChIP fragment indicating that both factors share common targets.
View Article and Find Full Text PDFElucidating how body parts from different primordia are integrated during development is essential for understanding the nature of morphological evolution. In tetrapod evolution, while the position of the hindlimb has diversified along with the vertebral formula, the mechanism responsible for this coordination has not been well understood. However, this synchronization suggests the presence of an evolutionarily conserved developmental mechanism that coordinates the positioning of the hindlimb skeleton derived from the lateral plate mesoderm with that of the sacral vertebrae derived from the somites.
View Article and Find Full Text PDFDuring vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments.
View Article and Find Full Text PDFReptile development is an intriguing research target for understating the unique morphogenesis of reptiles as well as the evolution of vertebrates. However, there are numerous difficulties associated with studying development in reptiles. The number of available reptile eggs is usually quite limited.
View Article and Find Full Text PDFTissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics.
View Article and Find Full Text PDFThe morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata.
View Article and Find Full Text PDFFibroblast growth factors (FGFs) expressed in the apical ectodermal ridge (AER) and FGF10 expressed in the underlying mesoderm are essential for limb bud outgrowth. Their expression is maintained through a positive feedback loop. We identified the cis-regulatory element and trans-acting factors involved in the AER-FGF-dependent transactivation of Fgf10.
View Article and Find Full Text PDFAnimal body color is generated primarily by neural crest-derived pigment cells in the skin. Mammals and birds have only melanocytes on the surface of their bodies; however, fish have a variety of pigment cell types or chromatophores, including melanophores, xanthophores, and iridophores. The medaka has a unique chromatophore type called the leucophore.
View Article and Find Full Text PDFThe number and shape of limb tendons vary along the proximodistal axis, and the autopod contains more tendons than the zeugopod. The transcription factor Six2 is expressed in the developing tendons, and its expression can be traced back to a group of limb mesenchymal cells that are thought to be tendon precursor cells. We tried to elucidate the mechanism controlling position-specific tendon pattern formation using Six2 as a tendon marker.
View Article and Find Full Text PDFDuring cardiogenesis, Fibroblast Growth Factor (Fgf10) is expressed in the anterior second heart field. Together with Fibroblast growth factor 8 (Fgf8), Fgf10 promotes the proliferation of these cardiac progenitor cells that form the arterial pole of the heart. We have identified a 1.
View Article and Find Full Text PDFSpatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans.
View Article and Find Full Text PDFAlthough recent findings showed that some Drosophila doublesex and Caenorhabditis elegans mab-3 related genes are expressed in neural tissues during development, their functions have not been fully elucidated. Here, we isolated a zebrafish mutant, ha2, that shows defects in telencephalic neurogenesis and found that ha2 encodes Doublesex and MAB-3 related transcription factor like family A2 (Dmrta2). dmrta2 expression is restricted to the telencephalon, diencephalon and olfactory placode during somitogenesis.
View Article and Find Full Text PDFThe spontaneous dominant mouse mutant, Elbow knee synostosis (Eks), shows elbow and knee joint synosotsis, and premature fusion of cranial sutures. Here we identify a missense mutation in the Fgf9 gene that is responsible for the Eks mutation. Through investigation of the pathogenic mechanisms of joint and suture synostosis in Eks mice, we identify a key molecular mechanism that regulates FGF9 signaling in developing tissues.
View Article and Find Full Text PDFDuring vertebrate gastrulation, both mesodermal and endodermal cells internalize through the blastopore beneath the ectoderm. In zebrafish, the internalized mesodermal cells move towards the dorsal side of the gastrula and, at the same time, they extend anteriorly by convergence and extension (C&E) movements. Endodermal cells showing characteristic filopodia then migrate into the inner layer within the hypoblast next to the yolk syncytial layer (YSL).
View Article and Find Full Text PDFIn this study, the initial specification of foregut endoderm in the chick embryo was analyzed. A fate map constructed for the area pellucida endoderm at definitive streak-stage showed centrally-located presumptive cells of foregut-derived organs around Hensen's node. Intracoelomic cultivation of the area pellucida endoderm at this stage combined with somatic mesoderm resulted in the differentiation predominantly into intestinal epithelium, suggesting that this endoderm may not yet be regionally specified.
View Article and Find Full Text PDFPattern formation along the proximal-distal (PD) axis in the developing limb bud serves as a good model for learning how cell fate and regionalization of domains, which are essential processes in morphogenesis during development, are specified by positional information. In the present study, detailed fate maps for the limb bud of the chick embryo were constructed in order to gain insights into how cell fate for future structures along the PD axis is specified and subdivided. Our fate map revealed that there is a large overlap between the prospective autopod and zeugopod in the distal limb bud at an early stage (stage 19), whereas a limb bud at this stage has already regionalized the proximal compartments for the prospective stylopod and zeugopod.
View Article and Find Full Text PDFIn zebrafish development, Nodal signaling is critical for the induction of endoderm and mesoderm. Three transcription factors downstream of Nodal, Bonnie and Clyde (Bon), Faust (Fau)/Gata5 and Casanova (Cas), are required for endoderm induction. However, it is not yet fully understood how the Nodal signaling pathway regulates the decision process of endoderm and mesoderm induction.
View Article and Find Full Text PDFThe roles of extra-embryonic tissues in early vertebrate body patterning have been extensively studied, yet we know little about their function during later developmental events. Here, we analyze the function of the zebrafish extra-embryonic yolk syncytial layer (YSL) specific transcription factor, Mtx1, and find that it plays an essential role in myocardial migration. Downregulating the function of Mtx1 in the YSL leads to cardia bifida, a phenotype in which the myocardial cells fail to migrate to the midline.
View Article and Find Full Text PDFMouse embryonic stem (ES) cells are pluripotent and retain the potential to form an organ similar to the gut showing spontaneous contractions in vitro. The morphological features of these structures and their formation, as assessed using the hanging drop method to produce embryoid bodies (EBs), seem to be similar to those in vivo. To determine whether the same molecular mechanisms are involved in the formation process, the expression pattern of transcription factors regulating endoderm and gut development in the mouse embryo was examined by in situ hybridization and compared with in vivo expression.
View Article and Find Full Text PDF