Chromosome aneuploidy is a common phenomenon in industrial yeast. Aneuploidy is considered one of the strategies to enhance the industrial properties of Saccharomyces cerevisiae strains. However, the effects of chromosomal aneuploidy on the brewing properties of sake have not been extensively studied.
View Article and Find Full Text PDFA variety of the yeast Saccharomyces cerevisiae with intracellular accumulation of isoleucine (Ile) would be a promising strain for developing a distinct kind of sake, a traditional Japanese alcoholic beverage, because Ile-derived volatile compounds have a great impact on the flavor and taste of fermented foods. In this study, we isolated an Ile-accumulating mutant (strain K9-I48) derived from a diploid sake yeast of S. cerevisiae by conventional mutagenesis.
View Article and Find Full Text PDF4-Vinylguaiacol (4-VG) is one of the most common off-flavors found in sake. 4-VG is produced from its precursor, ferulic acid, which is a component of the cell wall of the rice endosperm. The release of ferulic acid in sake brewing is thought to be mediated by feruloyl esterase produced by either Aspergillus oryzae or Saccharomyces cerevisiae.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
May 2022
Unlabelled: Sake is a traditional Japanese alcoholic beverage brewed by the yeast Saccharomyces cerevisiae. Since the consumption and connoisseurship of sake has spread around the world, the development of new sake yeast strains to meet the demand for unique sakes has been promoted. Phenylalanine is an essential amino acid that is used to produce proteins and important signaling molecules involved in feelings of pleasure.
View Article and Find Full Text PDFSaccharomyces cerevisiae produces organic acids including malate during alcohol fermentation. Since malate contributes to the pleasant flavor of sake, high-malate-producing yeast strain No. 28 and No.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
October 2020
Sake is a traditional Japanese alcoholic beverage brewed with the yeast Saccharomyces cerevisiae. Sake taste is affected by sugars, organic acids, and amino acids. We previously isolated mutants resistant to the proline analogue azetidine-2-carboxylate derived from a diploid sake yeast strain.
View Article and Find Full Text PDFMarker genes are essential for gene modification and genome editing of microorganisms. In Aspergillus oryzae, a widely used host for enzyme production, only a few marker genes can be used for positive selection. One of these genes, the pyrithiamine (PT) resistance marker gene thiA, is not useful for CRISPR/Cas9 genome editing because of its unique resistance-conferring mechanism.
View Article and Find Full Text PDFSaccharomyces cerevisiae produces organic acids such as succinate, acetate, and malate during alcoholic fermentation. Since malate contributes to the pleasant taste of sake (a Japanese alcoholic beverage), various methods for breeding high-malate-producing yeast strains have been developed. Here, a high-malate-producing yeast strain F-701H was isolated.
View Article and Find Full Text PDFMalate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate.
View Article and Find Full Text PDFIn Japanese sake brewing, cerulenin-resistant sake yeasts produce elevated levels of ethyl caproate, an important flavor component. The FAS2 mutation FAS2-1250S of Saccharomyces cerevisiae generates a cerulenin-resistant phenotype. This mutation is dominant, and, in general, cerulenin-resistant diploid sake yeast strains carry this mutation heterozygously.
View Article and Find Full Text PDFWe determined the genetic background that would result in a more optimal display of heterologously expressed beta-glucosidase (BGL) on the cell surface of yeast Saccharomyces cerevisiae. Amongst a collection of 28 strains carrying deletions in genes for glycosylphosphatidyl inositol (GPI)-anchored proteins, the Delta sed1 and Delta tos6 strains had significantly higher BGL-activity whilst maintaining wild type growth. Absence of Sed1p, which might facilitate incorporation of anchored BGL on the cell-surface, could also influence the activity of BGL on the cell surface with the heterologous gene being placed under the control of the SED1 promoter.
View Article and Find Full Text PDFBy application of the high-efficiency loss of heterozygosity (HELOH) method for disrupting genes in diploid sake yeast (Kotaka et al., Appl. Microbiol.
View Article and Find Full Text PDFSake yeast, a diploid Saccharomyces cerevisiae strain, is useful for industry but difficult to genetically engineer because it hardly sporulates. Until now, only a few recessive mutants of sake yeast have been obtained. To solve this problem, we developed the high-efficiency loss of heterozygosity (HELOH) method, which applies a two-step gene disruption.
View Article and Find Full Text PDFVector engineering and gene disruption in host cells were attempted for the enhancement of alpha-agglutinin-based display of proteins on the cell surface in yeast. To evaluate the display efficiency by flow cytometric analysis, DsRed-monomer fused with FLAG-tag was displayed and immunostained as a model protein. The use of leu2-d in the expression vector resulted in the enhanced efficiency and ratio of the accessible display of proteins.
View Article and Find Full Text PDFThree beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides.
View Article and Find Full Text PDFAspergillus oryzae glucoamylases encoded by glaA and glaB, and Rhizopus oryzae glucoamylase, were displayed on the cell surface of sake yeast Saccharomyces cerevisiae GRI-117-UK and laboratory yeast S. cerevisiae MT8-1. Among constructed transformants, GRI-117-UK/pUDGAA, displaying glaA glucoamylase, produced the most ethanol from liquefied starch, although MT8-1/pUDGAR, displaying R.
View Article and Find Full Text PDFFor efficient production of isoflavone aglycones from soybean isoflavones, we isolated three novel types of beta-glucosidase (BGL1, BGL3, and BGL5) from the filamentous fungi Aspergillus oryzae. Three enzymes were independently displayed on the cell surface of a yeast Saccharomyces cerevisiae as a fusion protein with alpha-agglutinin. Three beta-glucosidase-displaying yeast strains hydrolyzed isoflavone glycosides efficiently but exhibited different substrate specificities.
View Article and Find Full Text PDFThe gene encoding old yellow enzyme (OYE), which catalyzes the conversion of ketoisophorone (KIP; 2,6,6-trimethyl-2-cyclohexen-1,4-dione) to (6R)-levodione (2,2,6-trimethylcyclohexane-1,4-dione), of Candida macedoniensis was cloned and sequenced. A 1212bp nucleotide fragment (oye) was confirmed to be the gene encoding OYE based on the agreement of internal amino acid sequences. Oye encodes a total 403 amino acid residues, and the deduced amino acid sequence shows a high degree of similarity to those of other microbial OYE family proteins.
View Article and Find Full Text PDFMicroorganisms were screened for ones that reduced 3,5,5-trimethyl-2-cyclohexene-1,4-dione (ketoisophorone; KIP), and several strains were found to produce (6R)-2,2,6-trimethylcyclohexane-1,4-dione (levodione). The enzyme catalyzing the reduction of the C=C bond of KIP to yield (6R)-levodione was isolated from Candida macedoniensis AKU4588. The results of primary structural analysis and its enzymatic properties suggested that the enzyme might be an Old Yellow Enzyme family protein.
View Article and Find Full Text PDF