Publications by authors named "Atsushi Kishida"

Article Synopsis
  • Carbonyl stress is caused by the buildup of advanced glycation end products (AGEs) and is linked to diseases like diabetes and neurodegenerative disorders, including multiple sclerosis (MS).
  • The study explores how dimethyl fumarate (DMF), which activates the Nrf2 pathway, can counteract carbonyl stress and protect neuronal cells from damage caused by Methylglyoxal (MGO).
  • Findings show that DMF enhances glutathione levels and reduces harmful MG-H1-modified protein accumulation in cells, indicating that the Nrf2 pathway is crucial for the protective effects of DMF.
View Article and Find Full Text PDF

Advanced glycation end products (AGEs) with multiple structures are formed at the sites where carbonyl groups of reducing sugars bind to free amino groups of proteins through the Maillard reaction. In recent years, it has been highlighted that the accumulation of AGEs, which are generated when carbonyl compounds produced in the process of sugar metabolism react with proteins, is involved in various diseases. Creatine is a biocomponent that is homeostatically present throughout the body and is known to react nonenzymatically with α-dicarbonyl compounds.

View Article and Find Full Text PDF

A method is described for synthesizing succinonitrile derivatives bearing alkyl or aryl substituents from cyanohydrin derivatives using low-valent titanium. The active species in this reaction is proposed to be a resonance hybrid of the Ti nitrile enolate and Ti alkyl radical.

View Article and Find Full Text PDF

The formation of advanced glycation end products (AGEs) is associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease and schizophrenia. Methylglyoxal (MG), a highly reactive dicarbonyl compound, is known to be a major precursor for AGEs in modified proteins. Thus, a scavenger of MG might provide beneficial effects by suppressing the accumulation of AGEs and the occurrence of diseases induced by carbonyl stress.

View Article and Find Full Text PDF

L-[4-(13)C]Glutamine was synthesized from sodium [2-(13)C]acetate in 12 steps and 18% overall yield. A Wittig reaction of (R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate and ethyl 2-(triphenylphosphoranylidene)[2-(13)C]acetate prepared from D-serine and sodium [2-(13)C]acetate, respectively, gave (4S)-4-(2-ethoxycarbonyl[2-(13)C]vinyl)-2,2-dimethyloxazolidine-3-carboxylic acid α,β-isopropylidene group, oxidation of the resulting hydroxyl group to a carboxyl group and transamidation of the ester moiety gave L-N-Cbz-[4-(13)C]glutamine (Cbz = benzyloxycarbonyl). Finally, removal of the Cbz group gave L-[4-(13)C]glutamine.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbtamhva2ic8q73vi9l7hdsamd2a80rkr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once