Publications by authors named "Atsushi Kimbara"

Introduction: Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents.

View Article and Find Full Text PDF

(1) Background: The cannabinoid 2 receptor (CBR) is a promising anti-inflammatory drug target and development of selective CBR ligands may be useful for treating sight-threatening ocular inflammation. (2) Methods: This study examined the pharmacology of three novel chemically-diverse selective CBR ligands: CBR agonists, RO6871304, and RO6871085, as well as a CBR inverse agonist, RO6851228. In silico molecular modelling and cell-based receptor assays were used to verify CBR interactions, binding, cell signaling (ß-arrestin and cAMP) and early absorption, distribution, metabolism, excretion, and toxicology (ADMET) profiling of these receptor ligands.

View Article and Find Full Text PDF

Astrocytes are involved in non-cell-autonomous pathogenic cascades in amyotrophic lateral sclerosis (ALS); however, their role is still debated. We show that astrocytic NF-κB activation drives microglial proliferation and leukocyte infiltration in the SOD1 (G93A) ALS model. This response prolongs the presymptomatic phase, delaying muscle denervation and decreasing disease burden, but turns detrimental in the symptomatic phase, accelerating disease progression.

View Article and Find Full Text PDF

The cannabinoid receptor 2 (CB2) system is described to modulate various pathological conditions, including inflammation and fibrosis. A series of new heterocyclic small-molecule CB2 receptor agonists were identified from a high-throughput screen. Lead optimization gave access to novel, highly potent, and selective (over CB1) triazolopyrimidine derivatives.

View Article and Find Full Text PDF

Development of efficient methods for preparation of bioactive nonribosomal peptides, containing densely functionalized nonproteinogenic amino acids, is an important task in organic synthesis. We have employed a concise synthesis for such amino acids by asymmetric aldol addition coupled with an isomeric resolution via diastereoselective cyclization. This approach is successfully applied to the first total synthesis of the cyclic hexapeptide aglycone of the mannopeptimycins, a group of glycopeptides known for potent activity against drug-resistant bacteria.

View Article and Find Full Text PDF

A series of highly potent & selective adamantane derived CB2 agonists was identified in a high-throughput screen. A SAR was established and physicochemical properties were significantly improved. This was accompanied by potency of the compounds on the Q63R variant and varying β-arrestin data which will support the insight into their relevance for the in vivo situation.

View Article and Find Full Text PDF