Studies on the inhibitory mechanism of acetogenins, the most potent inhibitors of mitochondrial complex I (NADH-ubiquinone oxidoreductase), are useful for elucidating the structural and functional features of the terminal electron transfer step of this enzyme. Previous studies of the structure-activity relationship revealed that except for the alkyl spacer linking the two toxophores (i.e.
View Article and Find Full Text PDFStudies on the inhibition mechanism of acetogenins, the most potent inhibitors of complex I, are useful to elucidate the structural and functional features of the terminal electron-transfer step of this enzyme. We synthesized acetogenin mimics that possess two alkyl tails without a gamma-lactone ring, named Deltalac-acetogenin, and examined their inhibitory action on bovine heart mitochondrial complex I. Unexpectedly, the Deltalac-acetogenin carrying two n-undecanyl groups (compound 3) elicited very potent inhibition comparable to that of bullatacin.
View Article and Find Full Text PDFThe presence of two hydroxy groups adjacent to the THF ring(s) is a common structural feature of natural acetogenins. To elucidate the role of each hydroxy group in the inhibitory action of acetogenins, we synthesized three acetogenin analogues which lack either or both of the hydroxy groups, and investigated their inhibitory activities with bovine heart mitochondrial complex I. Our results indicate that the presence of either of the two hydroxy groups sufficiently sustains a potent inhibitory effect.
View Article and Find Full Text PDFTo elucidate the inhibitory action of acetogenins, the most potent inhibitors of mitochondrial complex I, we synthesized an acetogenin analogue which possesses a ubiquinone ring (i.e., the physiological substrate of complex I) in place of the alpha,beta-unsaturated gamma-lactone ring of natural acetogenins, and named it Q-acetogenin.
View Article and Find Full Text PDFWe synthesized novel ubiquinone analogs by hybridizing the natural ubiquinone ring (2,3-dimethoxy-5-methyl-1,4-benzoquinone) and hydrophobic phenoxybenzamide unit, and named them hybrid ubiquinones (HUs). The HUs worked as electron transfer substrates with bovine heart mitochondrial succinate-ubiquinone oxidoreductase (complex II) and ubiquinol-cytochrome c oxidoreductase (complex III), but not with NADH-ubiquinone oxidoreductase (complex I). With complex I, they acted as inhibitors in a noncompetitive manner against exogenous short-chain ubiquinones irrespective of the presence of the natural ubiquinone ring.
View Article and Find Full Text PDF