Publications by authors named "Atsushi Kashimura"

Japanese Brown cattle is the second most popular breed among Wagyu breeds and raised mainly in Kumamoto and Kochi Prefectures. Typical coat color of the Kumamoto sub-breed is solid brown, but individuals with diluted coat color are sometimes born. We previously detected four SNPs in PMEL gene and identified p.

View Article and Find Full Text PDF

Japanese Brown cattle are the second most popular Wagyu breed, and the Kumamoto sub-breed shows better daily gain and carcass weight. One of the breeding objectives for this sub-breed is to reduce genetic defects. Chondrodysplastic dwarfism and factor VIII deficiency have been identified as genetic diseases in the Kumamoto sub-breed.

View Article and Find Full Text PDF

Background: Coat color is important for registration and maintenance of livestock. Standard coat color of Kumamoto sub-breed of Japanese Brown cattle is solid brown, but individuals with diluted coat color have been observed recently. In this study, we attempted to identify polymorphism(s) responsible for coat color dilution by whole genome analysis.

View Article and Find Full Text PDF

The Kumamoto sub-breed of Japanese Brown cattle has unique characteristics, such as great growth rate, and their contribution as future breeding materials is expected. To develop a DNA marker for their breeding, we investigated the effects of Leptin gene, controlling energy homeostasis, on carcass traits of the Kumamoto sub-breed. Sequence comparison identified five single nucleotide polymorphisms (SNPs): four linked synonymous mutations and one nonsynonymous mutation.

View Article and Find Full Text PDF

A series of kinematic and electromyographic (EMG) studies were conducted to characterize the neural control of underground movement in the Japanese mole, Mogera wogura. For the purposes of the present study, the locomotion of moles was classified into two modes: crawling, which comprises alternate movements of the left and right forelimbs; and burrowing, in which both forelimbs move synchronously. In crawling, moles exhibit both symmetrical and asymmetrical locomotion independent of cycle duration and speed of travel.

View Article and Find Full Text PDF

A rare dysraphic caudal spinal anomaly, or caudal agenesis, comprising a tethered spinal cord, was found in a tailless Holstein calf that presented ataxia and paresis with analgesia of the hind limbs. The gently and slimly tapered conus medullaris was poorly formed between S2 and S3 which indicated that it was lying more caudally. The caudal end of the filum terminale adhered to the inner periosteum of the vertebral arch at S4, which is compatible with tethering of the spinal cord.

View Article and Find Full Text PDF

Coat color is one of the important factors characterizing breeds for domestic animals. Melanocortin 1 receptor (MC1R) is a representative responsible gene for this phenotype. Two single-nucleotide polymorphisms (SNPs) in bovine MC1R gene, c.

View Article and Find Full Text PDF

This report demonstrates the variable cardiac rhythm in two species of subterranean mole, the large Japanese mole (Mogera wogura) and the lesser Japanese mole (Mogera imaizumii). The phenomenon was revealed using X-ray videos of M. wogura and investigated in detail using electrocardiogram (ECG) traces recorded with implanted electrodes in this species and M.

View Article and Find Full Text PDF

Many small mammal species use torpor as a strategy for reducing energy expenditure in winter. Some rodent hibernators also hoard food to provide reserves of energy, and individuals with large hoards express less torpor than those with smaller reserves. These facts imply that animals can recognize levels of food availability, but where food is very plentiful, it is unclear whether torpor expression is affected by temporal changes in the extent of food overabundance.

View Article and Find Full Text PDF

Small endotherms employ multiple adaptations to maintain energy balance in winter, including spontaneous daily torpor and simultaneous huddling. The relationships between these adaptations have been discussed in several previous studies, but it has not been well-established if huddling actually affects the expression of torpor in small endotherms. We examine whether and how huddling affects the expression of torpor in the large Japanese field mouse Apodemus speciosus, which is known to become torpid under artificial winter conditions.

View Article and Find Full Text PDF