Background: The accuracy of mammography in breast cancer screening is influenced by different factors such as breast composition. However, previous studies did not evaluate the impact of breast size on examination accuracy. This study aimed to investigate the influence of breast size on the accuracy of mammography and ultrasonography in breast cancer screening using compressed breast thickness (CBT) on mammography as an indicator of breast size.
View Article and Find Full Text PDFObjective: Various efforts have been made to improve the accuracy of breast cancer screening. This study aimed to report differences in the contribution of ultrasonography to cancer screening assessments of dense and non-dense breasts.
Methods: The participants in this study were 29,640 Japanese women in their 40 s who underwent breast cancer screening at the Iwate Cancer Society between 2018 and 2021.
Non-secosteroidal vitamin D receptor (VDR) ligands are promising candidates for many clinical applications. We recently developed novel non-secosteroidal VDR agonists based on p-carborane (an icosahedral carbon-containing boron cluster) as a hydrophobic core structure. Here, we report the design, synthesis and biological evaluation of carborane-based vitamin D analogs bearing various substituents at the diol moiety.
View Article and Find Full Text PDFVitamin D receptor (VDR), a nuclear receptor for 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3, 1), is a promising target for multiple clinical applications. We recently developed non-secosteroidal VDR ligands based on a carbon-containing boron cluster, 1,12-dicarba-closo-dodecaborane (p-carborane), and examined the binding of one of them to VDR by means of crystallographic analysis. Here, we utilized that X-ray structure to design novel p-carborane-based tetraol-type vitamin D analogs, and we examined the biological activities of the synthesized compounds.
View Article and Find Full Text PDF1α,25-Dihydroxyvitamin D3 [1α,25(OH)₂D₃: 1] is a specific modulator of nuclear vitamin D receptor (VDR), and novel vitamin D analogs are therapeutic candidates for multiple clinical applications. We recently developed non-secosteroidal VDR agonists bearing a p-carborane cage (a carbon-containing boron cluster) as a hydrophobic core structure. These carborane derivatives are structurally quite different from classical secosteroidal vitamin D analogs.
View Article and Find Full Text PDFVitamin D receptor (VDR) is a nuclear receptor for 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)), and is an attractive target for multiple clinical applications. We recently developed novel non-secosteroidal VDR ligands bearing a hydrophobic p-carborane cage, thereby establishing the utility of this spherical hydrophobic core structure for development of VDR ligands. Here, we synthesized two series of novel non-secosteroidal VDR ligands with different spherical hydrophobic cores, that is, bicyclo[2.
View Article and Find Full Text PDFWe report here the design and synthesis of a novel vitamin D receptor (VDR) agonist whose hydrophobic core structure is p-carborane (1,12-dicarba-closo-dodecaborane, an icosahedral carbon-containing boron cluster having remarkable thermal and chemical stability and a characteristically hydrophobic B-H surface). This carborane-based VDR ligand exhibited moderate vitamin D activity, comparable to that of the natural hormone, despite its simple and flexible structure. X-ray structure analysis provided direct evidence that the carborane cage binds to the hydrophobic surface of the ligand-binding pocket of the receptor, promoting transition to the active conformation.
View Article and Find Full Text PDF