Publications by authors named "Atsuo Takahashi"

The present study was aimed at investigating the cardiac receptor subtypes involved in the cardioprotective effects of 2-octynyladenosine (YT-146), a novel adenosine receptor (AR) agonist. Isolated rat hearts were perfused in the Langendorff manner, and the hearts were exposed to 30 minute of ischemia followed by 60 minutes of reperfusion. YT-146 was infused for 10 minutes just before ischemia, and selective antagonists for AR subtypes were coadministered with YT-146.

View Article and Find Full Text PDF

Sphingosine 1-phosphate (S1P) induces diverse biological responses in various tissues by activating specific G protein-coupled receptors (S1P(1)-S1P(5) receptors). The biological signaling regulated by S1P(3) receptor has not been fully elucidated because of the lack of an S1P(3) receptor-specific antagonist or agonist. We developed a novel S1P(3) receptor antagonist, 1-(4-chlorophenylhydrazono)-1-(4-chlorophenylamino)-3,3-dimethyl- 2-butanone (TY-52156), and show here that the S1P-induced decrease in coronary flow (CF) is mediated by the S1P(3) receptor.

View Article and Find Full Text PDF

Sphingosine 1-phosphate (S1P) receptors are G-protein-coupled receptors. Among the five identified subtypes S1P1-5, the S1P3 receptor expressed on vascular endothelial cells has been shown to play an important role in cell proliferation, migration, and inflammation. A pharmacophore-based database search was used to identify a potent scaffold for an S1P3 receptor antagonist by common feature-based alignment and further validated using the Güner-Henry (GH) scoring method.

View Article and Find Full Text PDF

Gelation dynamics and gel structure of fibrinogen induced by serine protease, thrombin, was investigated by light scattering, real space observation using confocal laser scanning microscopy (CLSM), and turbidity. Effects of additives, such as (linear) saccharides, glucose to dextran, and cyclodextrin, were studied focusing on the interaction with fibrin(ogen) and thrombin. Light scattering measurement was ascertained to be able to characterize the gelation process and growth kinetics.

View Article and Find Full Text PDF

Analyses of the surface structure and properties of thermally heat-treated and non-treated segmented-polyurethane (SPU) surfaces showed that a crystalline structure, the domain size of which was larger than that of the micro-phase separation structure, appeared when the SPU surface was annealed in the temperature range of 60-140 degrees C. The appearance of the crystalline structure resulted in a decrease in surface free energy, that is, an increase in the hydrophobicity of the surface. Whole blood or platelet-rich plasma (PRP), when in contact with a SPU surface, which had previously been in contact with a glass surface during casting, coagulation of the whole blood occurred within approximately 30 min and, in case of PRP, in approximately 60 min.

View Article and Find Full Text PDF

We have identified a new class of chymase inhibitor through a substituent analysis of MWP00965, which we previously discovered by in silico screening. TY-51076 (7) showed high potency (IC(50)=56 nM) and excellent selectivity for chymase compared to chymotrypsin and cathepsin G (>400-fold). The synthesis and structure-activity relationship of this class are described.

View Article and Find Full Text PDF

In general, serine protease chymase inhibitors readily decompose in plasma. We previously found that thiazolidine-2,4-dione and thiadiazole derivatives are also unstable. Using a pharmacophore-based database search, we identified a benzo[b]thiophen-2-sulfonamide derivative as a stable chymase inhibitor.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is an intracellular second messenger and an extracellular mediator through endothelial differentiation gene (EDG) receptors, which are a novel class of G-protein-coupled receptors. Although EDG has attracted much attention because of its various roles, no selective agonists or antagonists have yet been developed. This could account for the delay in clarifying the physiological roles of members of the EDG family.

View Article and Find Full Text PDF

The dynamics of thrombin-induced fibrin gel formation was investigated by means of static and dynamic light scattering. The decay time distribution function, obtained by the dynamic light scattering, clearly revealed a stepwise gelation process: the formation of fibrin and protofibril from fibrinogen followed by the lateral aggregation of protofibrils to form fibrin fibers and the formation of a three-dimensional network consisting of fibers. This conversion process was correlated with the angular dependence of the scattered light intensity (static light scattering).

View Article and Find Full Text PDF