Publications by authors named "Atsuo Miyazawa"

Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in signal transduction at the neuromuscular junction (NMJ). Movement of the nAChR extracellular domain following agonist binding induces conformational changes in the extracellular domain, which in turn affects the transmembrane domain and opens the ion channel. It is known that the surrounding environment, such as the presence of specific lipids and proteins, affects nAChR function.

View Article and Find Full Text PDF

It is important to understand and control the fine structure of the fuel cell catalyst layer in order to improve the battery characteristics of the fuel cell. A major challenge in observing the microstructure of the catalyst layer by electron microscopy is the visualization of ionomers, which have low contrast and are susceptible to damage by electron beam irradiation. Previous papers have reported transmission electron microscopy (TEM) observations of ionomers neutralized with cesium (Cs) ions.

View Article and Find Full Text PDF

Phospholipids in the membrane consist of diverse pairs of fatty acids bound to a glycerol backbone. The biological significance of the diversity, however, remains mostly unclear. Part of this diversity is due to lysophospholipid acyltransferases (LPLATs), which introduce a fatty acid into lysophospholipids.

View Article and Find Full Text PDF

An emulsion, a type of soft matter, is complexed with at least two materials in the liquid state (e.g. water and oil).

View Article and Find Full Text PDF

Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active.

View Article and Find Full Text PDF

Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli, which causes fatal systemic complications. Here, we identified a tetravalent peptide that inhibited Stx by targeting its receptor-binding, B-subunit pentamer through a multivalent interaction. A monomeric peptide with the same motif, however, did not bind to the B-subunit pentamer.

View Article and Find Full Text PDF

The effects of sucrose ester of fatty acid (SEF) on the nanostructure and the physical properties of water-in-oil (W/O)-type emulsified semisolid fats were investigated. Model emulsions including palm-based semisolid fats and fully hydrogenated rapeseed oils with 0.5% SEF or fractionated lecithin, were prepared by rapidly cooling crystallization using 0.

View Article and Find Full Text PDF

The emergence of drug-resistant influenza type A viruses (IAVs) necessitates the development of novel anti-IAV agents. Here, we target the IAV hemagglutinin (HA) protein using multivalent peptide library screens and identify PVF-tet, a peptide-based HA inhibitor. PVF-tet inhibits IAV cytopathicity and propagation in cells by binding to newly synthesized HA, rather than to the HA of the parental virus, thus inducing the accumulation of HA within a unique structure, the inducible amphisome, whose production from the autophagosome is accelerated by PVF-tet.

View Article and Find Full Text PDF

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), is classified into two subgroups, Stx1 and Stx2. Clinical data clearly indicate that Stx2 is associated with more severe toxicity than Stx1, but the molecular mechanism underlying this difference is not fully understood. Here, we found that after being incorporated into target cells, Stx2, can be transported by recycling endosomes, as well as via the regular retrograde transport pathway.

View Article and Find Full Text PDF

The effect of nanostructured fat crystals on oil migration properties in water-in-oil-type emulsified semisolid fats was investigated. Model emulsions containing 4 different semisolid fats (palm oil, partially hydrogenated palm oil, partially hydrogenated soybean oil, and milk fat) and 1 bulk fat blend were prepared with rapidly cooling crystallization. The length of the nanoplatelets was observed by cryo transmission electron microscopy, the crystal thickness was calculated by small-angle X-ray diffraction, and the solid fat content (SFC) was determined.

View Article and Find Full Text PDF

Cryo-electron microscopy (cryo-EM) includes three technical methods, (1) rapid freezing for vitreous ice-embedding, (2) observation of frozen hydrated specimens, and (3) image processing for three-dimensional structural analysis. The three-dimensional structural analysis can be performed in three different ways. Electron crystallography can decipher the structure of membrane proteins at the highest resolution (atomic level).

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Casein micelles are present in bovine milk as colloidal particles with diameters of 20-600 nm, which are complex macromolecular assemblies composed of four distinct types of casein and colloidal calcium phosphate (CCP). Multiple structural models of casein micelles have been proposed based on their biochemical or physical properties and observed using electron microscopy. However, the CCP distribution and crosslinking structure between CCP and casein remain unclear.

View Article and Find Full Text PDF

Although α-synuclein (αSyn) has been linked to Parkinson's disease (PD), the mechanisms underlying the causative role in PD remain unclear. We previously proposed a model for a transportable microtubule (tMT), in which dynein is anchored to a short tMT by LIS1 followed by the kinesin-dependent anterograde transport; however the mechanisms that produce tMTs have not been determined. Our in vitro investigations of microtubule (MT) dynamics revealed that αSyn facilitates the formation of short MTs and preferentially binds to MTs carrying 14 protofilaments (pfs).

View Article and Find Full Text PDF

In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink.

View Article and Find Full Text PDF

In order to analyse the internal structures of multi-component fluid materials such as emulsions (including the inter-particle spacing) by cryo-electron microscopy, it is necessary to observe their smooth cross-sectional surfaces over wide areas. We have developed a system that involves the following steps: preservation of the structure of an emulsion adhesive using freeze fixation in its normal (moist) state and during the drying process after being coated, preparation of cross sections of the internal structure using a cryo-ultramicrotome and then transferral of the cross sections into a cryo-scanning electron microscope for observation via a cryo-transfer system. This system allows the direct observation of the cross sections of emulsions and of several fluid materials.

View Article and Find Full Text PDF

The postsynaptic density (PSD) is a protein complex that is critical for synaptic transmission. Ultrastructural changes in the PSD are therefore likely to modify synaptic functions. In this study, we investigated the ultrastructural changes in the PSD in the hippocampal CA1 stratum radiatum following neuronal excitation.

View Article and Find Full Text PDF

The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a.

View Article and Find Full Text PDF

We observed the dynamic three-dimensional (3D) single molecule behaviour of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) using a single molecule tracking technique, diffracted X-ray tracking (DXT) with atomic scale and 100 μs time resolution. We found that the combined tilting and twisting motions of the proteins were enhanced upon acetylcholine (ACh) binding. We present the internal motion maps of AChBP and nAChR in the presence of either ACh or α-bungarotoxin (αBtx), with views from two rotational axes.

View Article and Find Full Text PDF

Lichens result from symbioses between a fungus and either a green alga or a cyanobacterium. They are known to exhibit extreme desiccation tolerance. We investigated the mechanism that makes photobionts biologically active under severe desiccation using green algal lichens (chlorolichens), cyanobacterial lichens (cyanolichens), a cephalodia-possessing lichen composed of green algal and cyanobacterial parts within the same thallus, a green algal photobiont, an aerial green alga, and a terrestrial cyanobacterium.

View Article and Find Full Text PDF

Postsynaptic density-95 (PSD-95) accumulates at excitatory postsynapses and plays important roles in the clustering and anchoring of numerous proteins at the PSD. However, a detailed ultrastructural analysis of clusters exclusively consisting of PSD-95 has never been performed. Here, we employed a genetically encoded tag, three tandem repeats of metallothionein (3MT), to study the structure of PSD-95 clusters in cells by electron tomography and cryo-electron microscopy of vitreous sections.

View Article and Find Full Text PDF

Bovine heart NADH:ubiquinone oxidoreductase (complex I), which is the largest (about 1 MDa) membrane protein complex in the mitochondrial respiratory chain, catalyzes the electron transfer from NADH to ubiquinone, coupled with proton pumping. We have crystallized bovine complex I in reconstituted lipid bilayers and obtained a three-dimensional density map by the electron crystallographic analysis of a single negatively stained two-dimensional crystal. The asymmetric unit with dimensions of a = 388 Å, b = 129 Å and γ = 90° contains two molecules and is of P1 symmetry.

View Article and Find Full Text PDF

Mitochondrial F-ATP synthase produces the majority of ATP for cellular functions requiring free energy. The structural basis for proton motive force-driven rotational catalysis of ATP formation in the holoenzyme remains to be determined. Here, the purification and two-dimensional crystallization of bovine heart mitochondrial F-ATP synthase are reported.

View Article and Find Full Text PDF

Phospholipid membranes are thought to be one of the main inducers of hemozoin formation in Plasmodia and other blood-feeding parasites. The "membrane surrounding hemozoin" has been observed in infected cells but has not been observed in in vitro experiments. This study focused on observing the association of phospholipid membranes and synthetic β-hematin, which is chemically identical to hemozoin, and on a further exploration into the mechanism of phospholipid membrane-induced β-hematin formation.

View Article and Find Full Text PDF