Product formation pathways in the photolytically initiated oxidation of CH3OCH3 have been investigated as a function of temperature (298-600 K) and pressure (20-90 Torr) through the detection of HO2 and OH using Near-infrared frequency modulation spectroscopy, as well as the detection of CH3OCH2O2 using UV absorption spectroscopy. The reaction was initiated by pulsed photolysis with a mixture of Cl2, O2, and CH3OCH3. The HO2 and OH yield is obtained by comparison with an established reference mixture, including CH3OH.
View Article and Find Full Text PDFTime-resolved production of HO2 and DO2 from the reactions of nondeuterated and deuterated ethyl and propyl radicals with O2 are measured as a function of temperature and pressure in the "transition region" between 623 and 748 K using the technique of laser photolysis/long path frequency modulation spectroscopy. Experimental measurements, using both pulsed-photolytic Cl-atom-initiated oxidation of ethane and propane and direct photolysis of ethyl, n-propyl, and isopropyl iodides, are compared to kinetic models based on the results of time-dependent master equation calculations with ab initio characterization of stationary points. The formation of DO2 and HO2 from the subsequent reaction of the alkyl radicals with O2 is followed by infrared frequency modulation spectroscopy.
View Article and Find Full Text PDFTransient absorption spectra and decay profiles of HO2 have been measured using cw near-IR two-tone frequency modulation absorption spectroscopy at 297 K and 50 Torr in diluent of N2 in the presence of water. From the depletion of the HO2 absorption peak area following the addition of water, the equilibrium constant of the reaction HO2 + H2O <--> HO2-H2O was determined to be K2 = (5.2 +/- 3.
View Article and Find Full Text PDF