Publications by authors named "Atsumi Miyagawa"

Circulating inorganic phosphate exhibits a remarkable daily oscillation based on food intake. In humans and rodents, the daily oscillation in response to food intake may be coordinated to control the intestinal absorption, renal excretion, cellular shifts, and extracellular concentration of inorganic phosphate. However, mechanisms regulating the resulting oscillation are unknown.

View Article and Find Full Text PDF

In response to kidney damage, osteocytes increase the production of several hormones critically involved in mineral metabolism. Recent studies suggest that osteocyte function is altered very early in the course of chronic kidney disease. In the present study, to clarify the role of osteocytes and the canalicular network in mineral homeostasis, we performed four experiments.

View Article and Find Full Text PDF

In this review, we focus on the interconnection of inorganic phosphate (Pi) homeostasis in the network of the bone-kidney, parathyroid-kidney, intestine-kidney, and liver-kidney axes. Such a network of organ communication is important for body Pi homeostasis. Normalization of serum Pi levels is a clinical target in patients with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Phosphate (Pi), one of most abundant anions in living organisms, plays a crucial role in biomineralization. An adequate plasma Pi concentration is required to maintain the calcium × phosphate ion product within a range sufficient for physiological bone mineralization, but an increase in the calcium × phosphate product in extracellular fluids above a certain threshold can predispose to extraskeletal calcification. Membrane transport systems for Pi transport are key elements in maintaining homeostasis of Pi in organisms.

View Article and Find Full Text PDF

Marked hypophosphatemia is common after major hepatic resection, but the pathophysiologic mechanism remains unknown. We used a partial hepatectomy (PH) rat model to investigate the molecular basis of hypophosphatemia. PH rats exhibited hypophosphatemia and hyperphosphaturia.

View Article and Find Full Text PDF

Small intestine plays an important role in the sensing of various nutrients. There is information that would imply the existence of a dietary phosphate sensing mechanism within the intestine. Recent studies suggest that intestinal factors may involve in the alteration of renal phosphate transport.

View Article and Find Full Text PDF