Publications by authors named "Atsumi Iida"

The histone modification H3K27me3 regulates transcription negatively, and Jmjd3 and Ezh2 demethylate and methylate H3K27me3 and H3K27, respectively. We demonstrated previously that Jmjd3 plays pivotal roles in the differentiation of subsets of bipolar (BP) cells by regulating H3K27me3 levels at the Bhlhb4 and Vsx1 loci, both of which are transcription factors essential for the maturation of BP cell subsets. In this study, we examined the role of Ezh2 in retinal development using retina-specific Ezh2 conditional knockout mice (Ezh2-CKO).

View Article and Find Full Text PDF

The vertebrate lens undergoes organelle and nuclear degradation during lens development, allowing the lens to become transparent. DNase2b is an enzyme responsible for nuclear degradation in the mouse lens; however, dnase2b expression in zebrafish showed a distribution pattern that differed from that in mice. No zebrafish dnase2b was detected by reverse-transcription polymerase chain reaction until around 120 h postfertilization (hpf), suggesting that dnase2b is not expressed in the critical period for lens nuclear degradation, which corresponds to 56-74 hpf.

View Article and Find Full Text PDF

Di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) is an important gene repression mechanism. H3K27me2/3-specific demethylase, Jmjd3, was expressed in the inner nuclear layer during late retinal development. In contrast, H3K27 methyltransferase, Ezh2, was highly expressed in the embryonic retina but its expression decreased rapidly after birth.

View Article and Find Full Text PDF

Retinal progenitor cells alter their properties over the course of development, and sequentially produce different sub-populations of retinal cells. We had previously found that early and late retinal progenitor cell populations can be distinguished by their surface antigens, SSEA-1 and c-kit, respectively. Using DNA microarray analysis, we examined the transcriptomes of SSEA-1 positive cells at E14, and c-kit positive, and c-kit negative cells at P1.

View Article and Find Full Text PDF

Cone photopigments (opsins) are crucial elements of, and the first detection module in, color vision. Individual opsins have different wavelength sensitivity patterns, and the temporal and spatial expression patterns of opsins are unique and stringently regulated. Long and middle wavelength-sensitive (L/M) opsins are of the same phylogenetic type.

View Article and Find Full Text PDF

Sry-related HMG box (Sox) proteins, Sox11 and Sox4 are members of the SoxC subtype. We found that Sox11 was strongly expressed in early retinal progenitor cells and that Sox4 expression began around birth, when expression of Sox11 subsided. To analyze the roles of Sox11 and Sox4 in retinal development, we perturbed their expression patterns in retinal explant cultures.

View Article and Find Full Text PDF

Sox11 and Sox4 play critical roles in retinal development, during which they display specific and unique expression patterns. The expression of Sox11 and Sox4 is temporally sequential, albeit spatially overlapping in some retinal subtypes. Gain-of-function and loss-of-function analyses suggested that Notch signaling suppresses Sox4 expression in the early developing retina but not during the later period of development.

View Article and Find Full Text PDF

MicroRNA-140 (miR-140) is specifically expressed in developing cartilage tissues. We have previously reported that miR-140 plays an important role during palatal cartilage development by modulating platelet-derived growth factor receptor alpha (pdgfra) in zebrafish. However, the regulatory mechanism of miR-140 in cartilage is still unknown.

View Article and Find Full Text PDF

The region-specific homeotic gene spalt (sal) gene plays a critical role in Drosophila development. The mammalian Sal homologous genes contain four members, and Sall3 is mainly expressed in horizontal cells. In the developing retinas of Sall3 knockout (KO) mice until around birth, horizontal precursor cells developed with comparable numbers and position; the horizontal cell marker NF160 was expressed weakly and neurite-like structure had once formed.

View Article and Find Full Text PDF

Purpose: Much attention has been paid to the roles of microRNA in developmental and biological processes. Dicer plays essential roles in cell survival and proliferation in various organs. We examined the role of Dicer in retinal development using retina-specific conditional knockout of Dicer in mice.

View Article and Find Full Text PDF

Cone photopigments, known as opsins, are pivotal elements and the first detection module used in color vision. In mice, cone photoreceptors are distributed throughout the retina, and short-wavelength (S) and medium-wavelength (M) opsins have unique expression patterns in the retina with a gradient along the dorsoventral axis; however, the mechanisms regulating the spatial patterning of cone opsin expression have not been well documented. The purpose of this study was to define the mechanisms regulating the spatial patterning of cone opsin expression.

View Article and Find Full Text PDF

Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are members of the steroid/thyroid hormone receptor superfamily. We have shown that two homologous COUP-TF genes, COUP-TFI and COUP-TFII, are expressed in developing mouse retina with a unique gradient along the dorsal-ventral axis. In this work, we aimed to characterize the detailed expression patterns of COUP-TFs in mature retina.

View Article and Find Full Text PDF

Although Müller glial cells play pivotal roles in the vertebrate retina, the regulation of their development is poorly understood. While Notch-Hes5 signaling has been shown to be involved in this developmental process, the presence of Müller glial cells in Hes5-deficient mice suggests the involvement of other molecules. We found that two group E Sox genes, Sox8 and Sox9, are expressed in proliferating progenitors and then exclusively in Müller glial cells in mouse retina.

View Article and Find Full Text PDF

Forkhead transcription factor (Fox) e1 is a causative gene for Bamforth-Lazarus syndrome, which is characterized by hypothyroidism and cleft palate. Applying degenerate polymerase chain reaction using primers specific for the conserved forkhead domain, we identified zebrafish foxe1 (foxe1). Foxe1 is expressed in the thyroid, pharynx, and pharyngeal skeleton during development; strongly expressed in the gill and weakly expressed in the brain, eye, and heart in adult zebrafish.

View Article and Find Full Text PDF

Ciliary epithelium (CE), which consists of nonpigmented and pigmented layers, develops from the optic vesicle. However, the molecular mechanisms underlying CE development have not been closely examined, in part because cell-surface markers suitable for specific labeling of subregions of the retina were unknown. Here, we identified CD138/syndecan-1 and stage specific embryonic antigen-1 (SSEA-1) CD15 as cell-surface antigens marking nonpigmented and pigmented CE, respectively.

View Article and Find Full Text PDF

Purpose: Glycoprotein m6a (M6a) is a cell-surface glycoprotein that belongs to the myelin proteolipid protein family. M6a is expressed mainly in the nervous system, and its expression and function in mammalian retina have not been described. Using proteomics analysis of mouse retinal membrane fractions, we identified M6a as a retinal membrane protein that is strongly expressed at embryonic stages.

View Article and Find Full Text PDF