The formation of methylglyoxal (MG), a reactive dicarbonyl compound, is accelerated under hyperglycemia, presumably contributing to tissue injury in diabetes. On the other hand, prostaglandin E2 (PGE2) has been implicated in glomerular hyperfiltration, a characteristic change in the early stage of diabetic nephropathy. We therefore examined whether MG was capable of inducing PGE2 production in rat mesangial cells (RMC) to address a possible mechanism by which hyperglycemia-derived dicarbonyls accelerated the development of diabetic nephropathy.
View Article and Find Full Text PDFObjective: 3-Deoxyglucosone (3-DG), a highly reactive intermediate of the glycation reaction, has been suggested to contribute to the development of diabetes complications. To verify this hypothesis, we assessed the relation between serum 3-DG concentrations and the severity of diabetic microangiopathy in diabetic patients.
Research Design And Methods: We conducted a high-performance liquid chromatography assay to determine the serum 3-DG concentrations of 110 diabetic patients with different degrees of severity of diabetic microangiopathy and 57 age-matched control subjects.
Background: The formation of methylglyoxal (MG), a highly reactive dicarbonyl compound, is accelerated through several pathways, including the glycation reaction under diabetic conditions, presumably contributing to tissue injury in diabetes. On the other hand, apoptotic cell death of glomerular cells has been suggested to play a role in the development of glomerulosclerosis in various types of glomerular injuries. We therefore examined whether MG was capable of inducing apoptosis in rat mesangial cells to address the possible mechanism by which hyperglycemia-related products accelerated pathologic changes in diabetic glomerulosclerosis.
View Article and Find Full Text PDF