Publications by authors named "Atsuko Nakaizumi"

The deleterious impact of diabetes on the retina is a leading cause of vision loss. Ultimately, the hypoxic retinopathy caused by diabetes results in irreversible damage to vascular, neuronal, and glial cells. Less understood is how retinal physiology is altered early in the course of diabetes.

View Article and Find Full Text PDF

The expression of versican, a hyaluronic acid (HA)-binding protein, during the development and differentiation of the retina has been reported. In this study, we performed histochemical and immunohistological analysis of HA and versican from the ciliary body to the retina in cynomolgus monkey eyes. Paraffin-embedded sections of cynomolgus monkey eyes, including from the ciliary body to the macular region, were prepared.

View Article and Find Full Text PDF

Background: Autoimmune mechanisms have been postulated as a cause of diabetic retinopathy (DR), as several autoantibodies have reportedly been detected in the serum of DR patients. In this present study, we measured serum and vitreous levels of anti-type II collagen (anti-II-C) antibodies in DR patients and investigated their association with the mechanism of development of DR.

Patients And Methods: Blood samples were obtained from patients with proliferative DR and from patients with diabetic macular edema who underwent vitrectomy at Osaka Medical College, Takatsuki City, Osaka, Japan.

View Article and Find Full Text PDF

Although microvascular cell death is a well established hallmark of diabetic retinopathy, which is a major cause of vision loss, much remains to be learned about the functional changes that precede the onset of morphological damage to retinal blood vessels. Early alterations of function are of interest since they may contribute to the development of irreversible pathological events. Because one of the earliest retinal effects of diabetes is the dysregulation of blood flow, we asked whether diabetes alters the functional organization of the capillary/arteriolar complex, which is the operational unit that plays an important role in regulating local perfusion.

View Article and Find Full Text PDF

Although oxidative stress is a hallmark of important vascular disorders such as diabetic retinopathy, it remains unclear why the retinal microvasculature is particularly vulnerable to this pathophysiological condition. We postulated that redox-sensitive ion channels may play a role. Using H(2)O(2) to cause oxidative stress in microvascular complexes freshly isolated from the adult rat retina, we assessed ionic currents, cell viability, intracellular oxidants, and cell calcium by using perforated-patch recordings, trypan blue dye exclusion, and fura-2 fluorescence, respectively.

View Article and Find Full Text PDF

Purpose: It is uncertain why retinal capillaries are particularly vulnerable to hypoxia. In this study, it was hypothesized that their specialized physiology, which includes being the predominant microvascular location of functional adenosine triphosphate-sensitive potassium (K(ATP)) channels, boosts their susceptibility to hypoxia-induced cell death.

Methods: Cell viability, ionic currents, intracellular calcium, and pericyte contractility in microvascular complexes freshly isolated from the rat retina were assessed using trypan blue dye exclusion, perforated-patch recordings, fura-2 fluorescence, and time-lapse videos.

View Article and Find Full Text PDF

Modulation of enzyme activity through nitrosylation has recently been identified as a new physiological activity of nitric oxide (NO). We hypothesized that NO enhances the TNF-α-induced death of retinal neurons through a suppression of nuclear factor-κB (NF-κB) by nitrosylation. In this study, cells from the RGC-5 line were exposed to different concentrations (2.

View Article and Find Full Text PDF