Publications by authors named "Atsuko Kawaji"

Preclinical Research & Development MR1704 is a selective G protein-coupled receptor 40/free fatty acid receptor 1 agonist, which exhibited favorable pharmacokinetic profiles and glucose-lowering effects in animal models. We studied the effects of MR1704 in a sulfonylurea-desensitized Sprague-Dawley rat model and evaluated the risk of pancreatic β-cell exhaustion compared to that of glibenclamide in Zucker fatty rats. Rats fed ad libitum a diet containing 0.

View Article and Find Full Text PDF

Activation of G protein-coupled receptor 40/Free fatty acid receptor 1 (GPR40/FFAR1), which is highly expressed in pancreatic β cells, is considered an important pharmacologic target for the treatment of type 2 diabetes mellitus. The aim of this study was to determine the effect of MR1704, a novel GPR40/FFAR1 agonist, on glucose homeostasis in rats. MR1704 is a highly potent and selective, orally bioavailable agonist with similar in vitro potencies among humans, mice, and rats.

View Article and Find Full Text PDF

The transcription factor NF-E2-related factor 2 (Nrf2) is a key regulator of cellular defense mechanisms against oxidative stress. Multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system, is characterized by progressive demyelination and neurodegeneration induced by inflammation and oxidative stress. The induction of Nrf2 signaling has been shown to inhibit disease development and progression in the experimental autoimmune encephalomyelitis (EAE) model of MS in mice.

View Article and Find Full Text PDF

To elucidate molecular mechanisms of adipocyte differentiation, we previously isolated TC10-like/ TC10betaLong (TCL/TC10betaL), which was transiently expressed in the early phase of adipogenesis of 3T3-L1 cells and seemed to be a positive regulator of adipogenesis. By using TCL/TC10betaL-overexpressing NIH-3T3 cells, we also isolated gelsolin as a gene whose expression was up-regulated by TCL/TC10betaL. However, the roles of gelsolin in adipocyte differentiation are unclear.

View Article and Find Full Text PDF

To elucidate molecular mechanisms of adipocyte differentiation, we previously isolated TC10-like/TC10betaLong (TCL/TC10betaL), regulators of G protein signaling 2 (RGS2), factor for adipocyte differentiation (fad) 104 and fad158, which were transiently expressed in the early phase of adipogenesis. These four genes seem to be positive regulators of adipogenesis, since their knockdown resulted in the inhibition of adipocyte differentiation. When growth-arrested 3T3-L1 cells were induced to differentiate, they first reentered the cell cycle and underwent several rounds of cell division, a process known as mitotic clonal expansion (MCE).

View Article and Find Full Text PDF