Publications by authors named "Atsuko Ito"

Background: Hospital-based specialized palliative care teams (HSPC) are important for symptom management and ethics support, especially during complex decision-making, but the needs of patients with noncancer diseases and their families from the HSPC are unclear. This study aimed to (I) compare the prevalence of symptom between patients with and without cancer and explore changes in symptom intensity after HSPC consultation in patients with noncancer; (II) determine factors related to ethics support; and (III) compare the percentage of request contents from patients and their families when a certified nurse specialist in gerontological nursing (geriatric care nurse below) is present in the HSPC to that when a certified nurse specialist in palliative care (palliative care nurse below) is present in the HSPC.

Methods: We utilized a retrospective cohort study to analyze 761 patients (360 with noncancer and 401 with cancer) referred to our HSPC at the National Center for Geriatrics and Gerontology using 10-year data (since 2011) available in an electronic medical record database.

View Article and Find Full Text PDF

Thrombospondin 1 (THBS1) is a secreted extracellular matrix glycoprotein that regulates a variety of cellular and physiological processes. THBS1's diverse functions are attributed to interactions between the modular domains of THBS1 with an array of proteins found in the extracellular matrix. THBS1's three Thrombospondin type 1 repeats (TSRs) are modified with O-linked glucose-fucose disaccharide and C-mannose.

View Article and Find Full Text PDF

NOTCH1 is a transmembrane receptor that initiates a signaling pathway involved in embryonic development of adult tissue homeostasis. The extracellular domain of NOTCH1 is composed largely of epidermal growth factor-like repeats (EGFs), many of which can be O-fucosylated at a specific consensus sequence by protein O-fucosyltransferase 1 (POFUT1). O-fucosylation of NOTCH1 is necessary for its function.

View Article and Find Full Text PDF

NOTCH1 is a transmembrane receptor that initiates a cell-cell signaling pathway controlling various cell fate specifications in metazoans. The addition of O-fucose by protein O-fucosyltransferase 1 (POFUT1) to epidermal growth factor-like (EGF) repeats in the NOTCH1 extracellular domain is essential for NOTCH1 function, and modification of O-fucose with GlcNAc by the Fringe family of glycosyltransferases modulates Notch activity. Prior cell-based studies showed that POFUT1 modifies EGF repeats containing the appropriate consensus sequence at high stoichiometry, while Fringe GlcNAc-transferases (LFNG, MFNG, and RFNG) modify O-fucose on only a subset of NOTCH1 EGF repeats.

View Article and Find Full Text PDF

Thrombospondin type-1 repeats (TSRs) are small protein motifs containing six conserved cysteines forming three disulfide bonds that can be modified with an O-linked fucose. Protein O-fucosyltransferase 2 (POFUT2) catalyzes the addition of O-fucose to TSRs containing the appropriate consensus sequence, and the O-fucose modification can be elongated to a Glucose-Fucose disaccharide with the addition of glucose by β3-glucosyltransferase (B3GLCT). Elimination of Pofut2 in mice results in embryonic lethality in mice, highlighting the biological significance of O-fucose modification on TSRs.

View Article and Find Full Text PDF

Many extracellular matrix (ECM) associated proteins that influence ECM properties have Thrombospondin type 1 repeats (TSRs) which are modified with O-linked fucose. The O-fucose is added in the endoplasmic reticulum to folded TSRs by the enzyme Protein O-fucosyltransferase-2 (POFUT2) and is proposed to promote efficient trafficking of substrates. The importance of this modification for function of TSR-proteins is underscored by the early embryonic lethality of mouse embryos lacking Pofut2.

View Article and Find Full Text PDF

Fibrillin-1 (FBN1) is the major component of extracellular matrix microfibrils, which are required for proper development of elastic tissues, including the heart and lungs. Through protein-protein interactions with latent transforming growth factor (TGF) β-binding protein 1 (LTBP1), microfibrils regulate TGF-β signaling. Mutations within the 47 epidermal growth factor-like (EGF) repeats of FBN1 cause autosomal dominant disorders including Marfan Syndrome, which is characterized by disrupted TGF-β signaling.

View Article and Find Full Text PDF

Peters Plus Syndrome (PTRPLS OMIM #261540) is a severe congenital disorder of glycosylation where patients have multiple structural anomalies, including Peters anomaly of the eye (anterior segment dysgenesis), disproportionate short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable additional abnormalities. PTRPLS patients and some Peters Plus-like (PTRPLS-like) patients (who only have a subset of PTRPLS phenotypes) have mutations in the gene encoding β1,3-glucosyltransferase (B3GLCT). B3GLCT catalyzes the transfer of glucose to O-linked fucose on thrombospondin type-1 repeats.

View Article and Find Full Text PDF

Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded thrombospondin type 1 repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose.

View Article and Find Full Text PDF

Successful hematopoietic progenitor cell (HPC) transplant therapy is improved by mobilizing HPCs from the bone marrow niche in donors. Notch receptor-ligand interactions are known to retain HPCs in the bone marrow, and neutralizing antibodies against Notch ligands, Jagged-1 or Delta-like ligand (DLL4), or NOTCH2 receptor potentiates HPC mobilization. Notch-ligand interactions are dependent on posttranslational modification of Notch receptors with O-fucose and are modulated by Fringe-mediated extension of O-fucose moieties.

View Article and Find Full Text PDF

Notch signaling is a cellular pathway regulating cell-fate determination and adult tissue homeostasis. Little is known about how canonical Notch ligands or Fringe enzymes differentially affect NOTCH1 and NOTCH2. Using cell-based Notch signaling and ligand-binding assays, we evaluated differences in NOTCH1 and NOTCH2 responses to Delta-like (DLL) and Jagged (JAG) family members and the extent to which Fringe enzymes modulate their activity.

View Article and Find Full Text PDF
Article Synopsis
  • A 5-year study in Niigata, Japan, analyzed 179 patients with bacteremia caused by ESBL-producing organisms across six hospitals.
  • The study found that patients aged 85 and older were significantly more likely to receive appropriate carbapenem treatment compared to those aged 65-84 (89% vs. 61%).
  • Additionally, while other infection sites increased the risk of 30-day mortality, age itself (≥ 85 years) did not correlate with higher mortality in these patients, suggesting that carbapenem treatment may not be necessary for the elderly in such cases.
View Article and Find Full Text PDF

Fringe glycosyltransferases differentially modulate the binding of Notch receptors to Delta/DLL versus Serrate/Jagged ligands by adding GlcNAc to O-linked fucose on Notch epidermal growth factor-like (EGF) repeats. Although Notch has 22 O-fucosylation sites, the biologically relevant sites affecting Notch activity during animal development in vivo in the presence or absence of Fringe are not known. Using a variety of assays, we find important roles in Drosophila Notch signaling for GlcNAc-fucose-O glycans on three sites: EGF8, EGF9, and EGF12.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the impact of the quick Sequential Organ Failure Assessment (qSOFA) score on 30-day mortality rates in patients with bacteremia caused by extended-spectrum β-lactamase (ESBL)-producing bacteria.
  • A total of 203 adult patients were analyzed, revealing that bacteremia from certain ESBL-producing bacteria (Klebsiella pneumoniae and Proteus mirabilis), along with underlying liver disease and solid cancer, increased the likelihood of 30-day mortality.
  • The findings suggested that the qSOFA score did not serve as a reliable criterion for choosing carbapenem as an initial treatment option for these infections.
View Article and Find Full Text PDF

The Notch-signaling pathway is normally activated by Notch-ligand interactions. A recent structural analysis suggested that a novel -linked hexose modification on serine 435 of the mammalian NOTCH1 core ligand-binding domain lies at the interface with its ligands. This serine occurs between conserved cysteines 3 and 4 of Epidermal Growth Factor-like (EGF) repeat 11 of NOTCH1, a site distinct from those modified by protein -glucosyltransferase 1 (POGLUT1), suggesting that a different enzyme is responsible.

View Article and Find Full Text PDF

Protein O-fucosyltransferase-1 (POFUT1) adds O-fucose monosaccharides to epidermal growth factor-like (EGF) repeats found on approximately 100 mammalian proteins, including Notch receptors. Haploinsufficiency of POFUT1 has been linked to adult-onset Dowling Degos Disease (DDD) with hyperpigmentation defects. Homozygous deletion of mouse Pofut1 results in embryonic lethality with severe Notch-like phenotypes including defects in somitogenesis, cardiogenesis, vasculogenesis and neurogenesis, but the extent to which POFUT1 is required for normal human development is not yet understood.

View Article and Find Full Text PDF

Glycosylation in the endoplasmic reticulum (ER) is closely associated with protein folding and quality control. We recently described a non-canonical ER quality control mechanism for folding of thrombospondin type 1 repeats by protein -fucosyltransferase 2 (POFUT2). Epidermal growth factor-like (EGF) repeats are also small cysteine-rich protein motifs that can be -glycosylated by several ER-localized enzymes, including protein -glucosyltransferase 1 (POGLUT1) and POFUT1.

View Article and Find Full Text PDF

Objectives: This study examined both the frequency of appearance-related symptoms and distress resulting from these symptoms in cancer patients receiving chemotherapy.

Methods: Self-report questionnaires were distributed to 753 outpatients receiving ≧ 4 weeks of treatment at an outpatient chemotherapy center. Valid responses were returned by 638 patients (response rate, 84.

View Article and Find Full Text PDF

Objectives: Dry mouth is a condition associated with reduced salivary secretion and is thought to be related to aging. This study was conducted to test whether reduced (ubiquinol) or oxidized (ubiquinone) forms of CoQ10 affect salivary secretion and salivary CoQ10 content before and after treatment.

Design And Methods: Sixty-six patients were given either ubiquinol or ubiquinone orally at a dosage of 100 mg/day, or a placebo for 1 month, and salivary secretion and salivary CoQ10 content were analyzed before and after treatment.

View Article and Find Full Text PDF