Publications by authors named "Atreyee Kundu"

Plants exposed to heavy metals (HMs) stress negatively affect their development and production capacity. Chromium (Cr), Cadmium (Cd), and Lead (Pb) are the most common hazardous trace metals in agriculture. The physiological, biochemical, and molecular characteristics of crops are being affected.

View Article and Find Full Text PDF

Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption.

View Article and Find Full Text PDF

Purpose: Production of a designer crop having added attributes is the primary goal of all plant biotechnologists. Specifically, development of a crop with a simple biotechnological approach and at a rapid pace is most desirable. Genetic engineering enables us to displace genes among species.

View Article and Find Full Text PDF

Human gut microbiome is a major source of human bacterial population and a significant contribution to both positive and harmful effects. Due to its involvement in a variety of interactions, gut microorganisms have a great impact on our health throughout our lives. The impact of gut microbial population is been studied intensively in last two decades.

View Article and Find Full Text PDF

Cancer cells are different from normal cells in regard to phenotypic and functional expression. Cancer is the outcome of aberrant gene expression affecting various cellular signaling pathways. MicroRNAs (MiRs) are small, non-coding RNAs regulating the expression of various protein-coding genes post-transcriptionally and are known to play critical roles in the complicated cellular pathways leading to cell growth, proliferation, development, and apoptosis.

View Article and Find Full Text PDF

Background: Various cultivars exhibit a range of diversity for morphological and physiological traits. However, there are few studies on diversity of metabolic profiles and genetic background to understand the complex metabolic pathway in ginseng.

Methods: To understand the complex metabolic pathway and related genes in ginseng, we tried to conduct integrated analysis of primary metabolite profiles and related gene expression using five ginseng cultivars showing different morphology.

View Article and Find Full Text PDF