Vibration and sound are the shaping matrix of the entire universe. Everything in nature is shaped by energy vibrating and communicating through its own sound trail. Every cell within our body vibrates at defined frequencies, generating its peculiar "sound signature".
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-β-amyloid (Aβ) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aβ toxicity.
View Article and Find Full Text PDFBeyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e.
View Article and Find Full Text PDFMitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences.
View Article and Find Full Text PDFAlzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by memory and cognitive impairment and by the accumulation in the brain of abnormal proteins, more precisely beta-amyloid (β-amyloid or Aβ) and Tau proteins. Studies aimed at researching pharmacological treatments against AD have focused precisely on molecules capable, in one way or another, of preventing/eliminating the accumulations of the aforementioned proteins. Unfortunately, more than 100 years after the discovery of the disease, there is still no effective therapy in modifying the biology behind AD and nipping the disease in the bud.
View Article and Find Full Text PDFAlzheimer's disease (AD), certainly the most widespread proteinopathy, has as classical neuropathological hallmarks, two groups of protein aggregates: senile plaques and neurofibrillary tangles. However, the research interest is rapidly gaining ground in a better understanding of other pathological features, first, of all the mitochondrial dysfunctions. Several pieces of evidence support the hypothesis that abnormal mitochondrial function may trigger aberrant processing of amyloid progenitor protein or tau and thus neurodegeneration.
View Article and Find Full Text PDFMitochondria, traditionally identified as the powerhouses of eukaryotic cells, constitute a dynamic network of signaling platforms with multifaceted key roles in cell metabolism, proliferation and survival [...
View Article and Find Full Text PDFTau cleavage plays a crucial role in the onset and progression of Alzheimer's Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)-a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic β cells and to induce insulin resistance-mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-β (Aβ) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism.
View Article and Find Full Text PDFMitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. In recent decades, the growing interest in mitochondria research has revealed that these multifunctional organelles are more than just the cell powerhouses, playing many other key roles as signaling platforms that regulate cell metabolism, proliferation, death and immunological response. As key regulators, mitochondria, when dysfunctional, are involved in the pathogenesis of a wide range of metabolic, neurodegenerative, immune and neoplastic disorders.
View Article and Find Full Text PDFMitochondria are complex intracellular organelles involved in many aspects of cellular life, with a primary role in bioenergy production via oxidative phosphorylation (OXPHOS) [...
View Article and Find Full Text PDFThe mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.
View Article and Find Full Text PDFRetina and optic nerve are sites of extra-cerebral manifestations of Alzheimer's Disease (AD). Amyloid-β (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications-such as truncation with generation of toxic fragments-nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration.
View Article and Find Full Text PDFThe redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined.
View Article and Find Full Text PDFA new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease.
View Article and Find Full Text PDFCystic fibrosis (CF) occurs when the cystic fibrosis transmembrane conductance regulator (CFTR) protein is not synthetized and folded correctly. The CFTR protein helps to maintain the balance of salt and water on many body surfaces, such as the lung surface. When the protein is not working correctly, chloride becomes trapped in cells, then water cannot hydrate the cellular surface and the mucus covering the cells becomes thick and sticky.
View Article and Find Full Text PDFBoth cancer and Alzheimer's disease (AD) are emerging as metabolic diseases in which aberrant/dysregulated glucose metabolism and bioenergetics occur, and play a key role in disease progression. Interestingly, an enhancement of glucose uptake, glycolysis and pentose phosphate pathway occurs in both cancer cells and amyloid-β-resistant neurons in the early phase of AD. However, this metabolic shift has its adverse effects.
View Article and Find Full Text PDFDirect and indirect evidences show that elevated glucose concentrations in airway surface liquid (ASL) promote lung infection by pathogens, playing a role in the progression of the Cystic Fibrosis (CF) disease. The joint action of transporter/s for glucose and of the cellular enzymes is essential in order to try to lower ASL glucose level. Inside the cell, the glycolysis and the pentose phosphate pathway (PPP) compete for the utilization of glucose-6-phosphate (G6P), the product in which glucose, after entry within the cell and phosphorylation, is trapped.
View Article and Find Full Text PDFCell Mol Life Sci
August 2018
Glucose avidity, high glycolysis and L-lactate production, regardless of oxygen availability, are the main traits of cancer metabolic reprogramming. The idea that mitochondria are dysfunctional in cancer, thus causing a glycolysis increase for ATP production and L-lactate accumulation as a dead-end product of glucose catabolism, has oriented cancer research for many years. However, it was shown that mitochondrial metabolism is essential for cancer cell proliferation and tumorigenesis and that L-lactate is a fundamental energy substrate with tumor growth-promoting and signaling capabilities.
View Article and Find Full Text PDFCystic fibrosis (CF) is associated to impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel also causing decreased glutathione (GSH) secretion, defective airway bacterial clearance and inflammation. Here we checked the main ROS-producing and ROS-scavenging enzymes as potential additional factors involved in CF pathogenesis. We found that CFBE41o-cells, expressing F508del CFTR, have increased NADPH oxidase (NOX) activity and expression level, mainly responsible of the increased ROS production, and decreased glutathione reductase (GR) activity, not dependent on GR protein level decrease.
View Article and Find Full Text PDFThe largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH tau 26-44 (aka NH htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH htau.
View Article and Find Full Text PDFThe neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis.
View Article and Find Full Text PDFAfter more than 80 years from the revolutionary discoveries of Otto Warburg, who observed high glucose dependency, with increased glycolysis and lactate production regardless of oxygen availability in most cancer cells, the 'Warburg effect' returns to the fore in neuronal cells affected by Alzheimer's disease (AD). Indeed, it seems that, in the mild phase of AD, neuronal cells "prefer" to use the energetically inefficient method of burning glucose by glycolysis, as in cancer, proving to become resistant to β-amyloid (Aβ)-dependent apoptosis. However, in the late phase, while most AD brain cells die in response to Aβ toxicity, only small populations of neurons, exhibiting increased glucose uptake and glycolytic flux, are able to survive as they are resistant to Aβ.
View Article and Find Full Text PDFEvidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase.
View Article and Find Full Text PDFThe metabolism of benthic aquatic invertebrates, populating transitional water ecosystems, is influenced by both physiological and environmental factors, thus involving an adjustment of physiological processes which has a metabolic cost. In order to discover changes in metabolic pathways in response to specific factors, it's firstly necessary characterizing the principal cellular metabolic activities of the small benthic aquatic organisms. We approach here the bioenergetic state issue of two benthic organisms, i.
View Article and Find Full Text PDFDisarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model.
View Article and Find Full Text PDF