The ability to control the morphologies and spectral properties of organic low-dimensional nanomaterials is of paramount importance. The research reported herein demonstrates a template-free approach to tailored morphological and optical properties for a novel class of pseudoisocyanine (PIC)-based fluorescent organic nanoparticles derived from a group of uniform materials based on organic salts (GUMBOS). The synthesized nanoscale PIC-based particles (termed nanoGUMBOS), [PIC][NTf(2)] and [PIC][BETI], exhibit interesting adaptability as a function of the associated anion.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2012
Groups of uniform materials based on organic salts (GUMBOS), derived from thiacarbocyanine (TC)-based dyes with increasing methyne chain lengths, were prepared through a single-step metathesis reaction between the iodide form of the TC dye and lithium bis(perfluoroethylsulfonyl)imide as the lipophilic anion source. Ionic self-assembly of these fluorescent hydrophobic GUMBOS resulted in aqueous dispersions of one-dimensional micro-and nano-scale molecular aggregates. Blended binary and ternary aggregates containing multiple TC GUMBOS were also prepared.
View Article and Find Full Text PDFMicrostructures of sodium deoxycholate hydrogels were altered considerably in the presence of variable tris(hydroxymethyl)aminomethane (TRIS) concentrations. These observations were confirmed by use of X-ray diffraction, polarized optical microscopy, rheology, and differential scanning calorimetry measurements. Our studies reveal enhanced gel crystallinity and rigidity with increasing TRIS concentrations.
View Article and Find Full Text PDF