Publications by authors named "Atiya Banerjee"

Mössbauer spectroscopy provides significant insights into the electronic structure and environment of the metal centers. Herein, we investigate the electronic structures of a set of nonheme diiron complexes by evaluating two key parameters pertaining to Mössbauer spectroscopy, namely, the isomer shift (δ) and quadrupole splitting (|Δ|), using different levels of density functional theory (DFT). The diiron systems investigated here span diverse oxidation states, bridging motifs, and spin coupling patterns, which present a challenging case for theoretical predictions.

View Article and Find Full Text PDF

The present study is motivated by the long-term objective of understanding how ionic liquids are biodegraded by cytochrome P450, which contains iron porphyrin (FeP) serving as the catalytic center. To this end, the current study is designed to elucidate the impact of types and conformations of ionic liquids on the binding energy with FeP, the key interactions that stabilize the ionic liquid-FeP complex, and how the electron uptake ability of FeP is altered in the presence of ionic liquids. Four classes of ionic liquids are considered: 1-alkyl-3-methylimidazolium, 1-alkyl-pyridinium, 1-alkylsulfonium, and N-methyl-N-alkylpyrrolidinium.

View Article and Find Full Text PDF

The first step in the biodegradation of imidazolium-based ionic liquids involves the insertion of the -OH group into the alkyl side chain, and it is believed to be triggered by cytochrome P450. However, at present, there is a lack of fundamental understanding of why the hydroxylation process is observed only for longer alkyl chain analogues. As the initial step of the hydroxylation reaction involves the ionic liquid binding to Fe-porphyrin (FeP) - the catalytic center of cytochrome P450, the orientation of ionic liquids presented to FeP is expected to play a crucial role in eventual hydroxylation of the alkyl side chain.

View Article and Find Full Text PDF