Publications by authors named "Atish Ganguly"

BteA, a 69-kDa cytotoxic protein, is a type III secretion system (T3SS) effector in the classical Bordetella, the etiological agents of pertussis and related mammalian respiratory diseases. Currently there is limited information regarding the structure of BteA or its subdomains, and no insight as to the identity of its eukaryotic partners(s) and their modes of interaction with BteA. The mechanisms that lead to BteA dependent cell death also remain elusive.

View Article and Find Full Text PDF

The Amyloid Precursor Protein (APP) undergoes sequential proteolytic cleavages through the action of beta- and gamma-secretase, which result in the generation of toxic beta-amyloid (Abeta) peptides and a C-terminal fragment consisting of the intracellular domain of APP (AICD). Mutations leading to increased APP levels or alterations in APP cleavage cause familial Alzheimer's disease (AD). Thus, identification of factors that regulate APP steady state levels and/or APP cleavage by gamma-secretase is likely to provide insight into AD pathogenesis.

View Article and Find Full Text PDF

The majority of familial Alzheimer's disease (AD) cases are caused by mutations in presenilins, therefore, identifying regulators of presenilins is crucial for understanding AD pathogenesis. Ubiquilin 1 (UBQLN1) binds Presenilins in mammalian cells; however, the functional significance of this interaction in vivo remains unclear. Moreover, while genetic variants in UBQLN1 have recently been reported to associate with an increased risk for AD, whether these variants have altered function is unknown.

View Article and Find Full Text PDF

The maternal Toll signaling pathway sets up a nuclear gradient of the transcription factor Dorsal in the early Drosophila embryo. Dorsal activates twist and snail, and the Dorsal/Twist/Snail network activates and represses other zygotic genes to form the correct expression patterns along the dorsoventral axis. An essential function of this patterning is to promote ventral cell invagination during mesoderm formation, but how the downstream genes regulate ventral invagination is not known.

View Article and Find Full Text PDF

The Snail family of zinc-finger transcriptional repressors is essential for morphogenetic cell movements, mesoderm formation, and neurogenesis during embryonic development. These proteins also control cell cycle, cell death, and cancer progression. In Drosophila, three members of this protein family, Snail, Escargot, and Worniu, have essential but redundant functions in asymmetric cell division of neuroblasts.

View Article and Find Full Text PDF