We report on exciton-plasmon coupling in metallic moiré cavities, both numerically and experimentally. Moiré cavities fabricated using double exposure laser interference lithography were filled with a molecular dye, J-aggregate. Polarization-dependent spectroscopic reflection measurements supported by simulations reveal strong coupling of organic dye excitons with cavity modes of the plasmonic moiré cavities.
View Article and Find Full Text PDFControlling plasmon-exciton coupling through band gap engineering of plasmonic crystals is demonstrated in the Kretschmann configuration. When the flat metal surface is textured with a sinusoidal grating only in one direction, using laser interference lithography, it exhibits a plasmonic band gap because of the Bragg scattering of surface plasmon polaritons on the plasmonic crystals. The contrast of the grating profile determines the observed width of the plasmonic band gap and hence allows engineering of the plasmonic band gap.
View Article and Find Full Text PDFCoupled states of surface plasmon polaritons (SPPs) and excitons are collectively called plexcitons [Nano Lett.8, 3481 (2008)]. Plexcitonics is an emerging field of research aiming to control light-matter interaction at the nanometer length scale using coupled pairs of surface-plasmons and excitons.
View Article and Find Full Text PDFWe report on the experimental and theoretical investigations of enhancing the optical absorption of organic molecules in the weak plasmon-exciton coupling regime. A metal-organic hybrid structure consisting of dye molecules embedded in the polymer matrix is placed in close vicinity to thin metal films. We have observed a transition from a weak coupling regime to a strong coupling one as the thickness of the metal layer increases.
View Article and Find Full Text PDFIn this Letter, we report on dark field imaging of localized surface plasmon polaritons (SPPs) in plasmonic waveguiding bands formed by plasmonic coupled cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode.
View Article and Find Full Text PDFWe report critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moiré surfaces. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. The critical coupling conditions depend on the superperiod of the Moiré surface, which also defines the coupling between the cavities.
View Article and Find Full Text PDFWe report on a comparative study of grating based plasmonic band gap cavities. Numerically, we calculate the quality factors of the cavities based on three types of grating surfaces; uniform, biharmonic and Moiré surfaces. We show that for biharmonic band gap cavities, the radiation loss can be suppressed by removing the additional grating component in the cavity region.
View Article and Find Full Text PDFIn this study, we demonstrate that periods of metallic gratings on elastomeric substrates can be tuned with external strain and hence are found to control the resonance condition of surface plasmon polaritons. We have excited the plasmon resonance on the elastomeric grating coated with gold and silver. The grating period is increased up to 25% by applying an external mechanical strain.
View Article and Find Full Text PDFWe have demonstrated slow propagation of surface plasmons on metallic Moiré surfaces. The phase shift at the node of the Moiré surface localizes the propagating surface plasmons and adjacent nodes form weakly coupled plasmonic cavities. Group velocities around v_{g}=0.
View Article and Find Full Text PDFSurface-enhanced Raman Scattering (SERS) of rhodamine 6G (R6G) adsorbed on biharmonic metallic grating structures was studied. Biharmonic metallic gratings include two different grating components, one acting as a coupler to excite surface plasmon polaritons (SPP), and the other forming a plasmonic band gap for the propagating SPPs. In the vicinity of the band edges, localized surface plasmons are formed.
View Article and Find Full Text PDFOptical properties of multilayer InAs quantum dot waveguides, grown by molecular beam epitaxy, have been studied under applied electric field. Fabry-Perot measurements at 1515 nm on InAs/GaAs quantum dot structures yield a significantly enhanced linear electro-optic efficiency compared to bulk GaAs. Electro-absorption measurements at 1300 nm showed increased absorption with applied field accompanied with red shift of the spectra.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2008
Nanocrystals can be used as storage media for carriers in flash memories. The performance of a nanocrystal flash memory depends critically on the choice of nanocrystal size and density as well as on the choice of tunnel dielectric properties. The performance of a nanocrystal memory device can be expressed in terms of write/erase speed, carrier retention time and cycling durability.
View Article and Find Full Text PDFWe use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine.
View Article and Find Full Text PDFWe investigated silicon nanoclusters Si(nc) in a SiO2 matrix prepared by the plasma-enhanced chemical vapor deposition technique, using X-ray photoelectron spectroscopy (XPS) with external voltage stimuli in both static and pulsed modes. This method enables us to induce an additional charging shift of 0.8 eV between the Si2p peaks of the oxide and the underlying silicon, both in static and time-resolved modes, for a silicon sample containing a 6 nm oxide layer.
View Article and Find Full Text PDFAn elastomeric grating coupler fabricated by the replica molding technique is used to measure the modal indices of a silicon-on-insulator (SOI) planar waveguide structure. Because of the van der Waals interaction between the grating mold and the waveguide, the elastomeric stamp makes conformal contact with the waveguide surface, inducing a periodic index perturbation at the contact region. The phase of the incident light is changed to match the guided modes of the waveguide.
View Article and Find Full Text PDFIn this work, detailed design and realization of high quality factor (Q) racetrack resonators based on silicon-on-insulator rib waveguides are presented. Aiming to achieve critical coupling, suitable waveguide geometry is determined after extensive numerical studies of bending loss. The final design is obtained after coupling factor calculations and estimation of propagation loss.
View Article and Find Full Text PDF