The determination of the micro-equilibrium prototropic constants is often a tough task when the tautomeric ratio favors one of the species or when the chemical exchange is not slow enough to allow the quantitative detection of the tautomeric species. There are just few experimental methods available to reveal the constants of the tautomeric micro-equilibriums; its applicability depends on the nature of the tautomeric system. A combination of experimental and quantum chemistry calculated (1)H and (13)C NMR chemical shifts is presented here to estimate the population of the species participating in the tautomeric equilibriums of the tenoxicam, an important anti-inflammatory drug.
View Article and Find Full Text PDFTalanta
December 2009
In this work it is explained, by the first time, the application of programs SQUAD and HYPNMR to refine equilibrium constant values through the fit of electrophoretic mobilities determined by capillary zone electrophoresis experiments, due to the mathematical isomorphism of UV-vis absorptivity coefficients, NMR chemical shifts and electrophoretic mobilities as a function of pH. Then, the pK(a) values of tenoxicam in H(2)O/DMSO 1:4 (v/v) have been obtained from (1)H NMR chemical shifts, as well as of oxicams in aqueous solution from electrophoretic mobilities determined by CZE, at 25 degrees C. These values are in very good agreement with those reported by spectrophotometric and potentiometric measurements.
View Article and Find Full Text PDFJ Phys Chem B
February 2007
Due to dopamine's chemical structure and the fact that it has three pKa values, its deprotonation process, in aqueous solution, may involve different chemical species. For instance, the first deprotonation step, from the fully protonated dopamine molecule (H3DA+) to the neutral one (H2DA), will result in zwitterionic species if a proton from one of the OH groups in the catechol ring is lost or into a neutral species if the proton is lost from the amino group. Given that the interaction of such a product with its environment will be quite different depending on its nature, it is very important, therefore, to have an accurate knowledge of which is the dopamine chemical species that results after each deprotonation step.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2006
The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained.
View Article and Find Full Text PDF