Aim: We examined if tonic γ-aminobutyric acid (GABA)-activated currents in primary hippocampal neurons were modulated by insulin in wild-type and tg-APPSwe mice, an Alzheimer's disease (AD) model.
Methods: GABA-activated currents were recorded in dentate gyrus (DG) granule cells and CA3 pyramidal neurons in hippocampal brain slices, from 8 to 10 weeks old (young) wild-type mice and in dorsal DG granule cells in adult, 5-6 and 10-12 (aged) months old wild-type and tg-APPSwe mice, in the absence or presence of insulin, by whole-cell patch-clamp electrophysiology.
Results: In young mice, insulin (1 nmol/L) enhanced the total spontaneous inhibitory postsynaptic current (sIPSC ) density in both dorsal and ventral DG granule cells.
The hippocampus is a medial temporal lobe structure in the brain and is widely studied for its role in memory and learning, in particular, spacial memory and emotional responses. It was thought to be a homogenous structure but emerging evidence shows differentiation along the dorsoventral axis and even microdomains for functional and cellular markers. We have examined in two cell-types of the hippocampal projection neurons, the dentate gyrus (DG) granule cells and CA3 pyramidal neurons, if the GABA-activated tonic current density varied between the dorsal (septal) and the ventral (temporal) poles of the male mouse hippocampus.
View Article and Find Full Text PDFCalcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.
View Article and Find Full Text PDF