The capability of tailoring the resonance wavelength of metasurfaces is important as it can alleviate the manufacturing precision required to produce the exact structure according to the design of the nanoresonators. Tuning of Fano resonances by applying heat has been theoretically predicted in the case of silicon metasurfaces. Here, we experimentally demonstrate the permanent tailoring of quasi-bound states in the continuum (quasi-BIC) resonance wavelength in an a-Si:H metasurface and quantitatively analyze the modification in the -factor with gradual heating.
View Article and Find Full Text PDFSecond-harmonic generation (SHG) is a second-order nonlinear optical process that is not allowed in media with inversion symmetry. However, due to the broken symmetry at the surface, surface SHG still occurs, but is generally weak. We experimentally investigate the surface SHG in periodic stacks of alternating, subwavelength dielectric layers, which have a large number of surfaces, thus enhancing surface SHG considerably.
View Article and Find Full Text PDFWe report for the first time the direct growth of molybdenum disulfide (MoS) monolayers on nanostructured silicon-on-insulator waveguides. Our results indicate the possibility of utilizing the Chemical Vapour Deposition (CVD) on nanostructured photonic devices in a scalable process. Direct growth of 2D material on nanostructures rectifies many drawbacks of the transfer-based approaches.
View Article and Find Full Text PDF