Transition metal dichalcogenides, particularly MoS, are acknowledged as a promising cathode material for aqueous rechargeable zinc metal batteries (ARZMBs). Nevertheless, its lack of hydrophilicity, poor electrical conductivity, significant restacking, and restricted interlayer spacing translate into inadequate capacity and rate performance. Herein, the unique porous structure and additional functional groups present in holey graphene oxide (hGO) are taken advantage of to dictate the vertical growth pattern of oxygen-doped MoS nanowalls (O-MoS/NW) over the hGO surface.
View Article and Find Full Text PDFZinc anode deterioration in aqueous electrolytes, and Zn dendrite growth is a major concern in the operation of aqueous rechargeable Zn metal batteries (AZMBs). To tackle this, the replacement of aqueous electrolytes with a zinc hydrogel polymer electrolyte (ZHPE) is presented in this study. This method involves structural modifications of the ZHPE by phytic acid through an ultraviolet (UV) light-induced photopolymerization process.
View Article and Find Full Text PDFEnteric fever is a systemic infection caused by highly virulent serovars: Typhi and Paratyphi. Diagnosis of enteric fever is challenging due to a wide variety of clinical features which overlap with other febrile illnesses. The current diagnostic methods are limited because of the suboptimal sensitivity of conventional tests like blood culture in detecting organisms and the invasive nature of bone marrow culture.
View Article and Find Full Text PDFNephrotic syndrome (NS) affects 115-169 children per 100,000, with rates varying by ethnicity and location. Immune dysregulation, systemic circulating substances, or hereditary structural abnormalities of the podocyte are considered to have a role in the etiology of idiopathic NS. Following daily therapy with corticosteroids, more than 85% of children and adolescents (often aged 1 to 12 years) with idiopathic nephrotic syndrome have full proteinuria remission.
View Article and Find Full Text PDFIndian J Biochem Biophys
April 2009
Hypoxia is one of the major causes of damage to the fetal and neonatal brain and cardiac functions. In earlier studies, we have reported the brain damage caused by hypoxia and resuscitation with oxygen and epinephrine and have found that glucose treatment to hypoxic rats and hypoxic rats treated with oxygen shows a reversal of brain damage. The neonatal rats are shown to be deficient in free radical scavenging system, which offers a high risk of oxidative stress.
View Article and Find Full Text PDF