In the present study, a comprehensive polymer degradation-drug diffusion model is developed to describe the polymer degradation kinetics and quantify the release rate of an active pharmaceutical ingredient (API) from a size-distributed population of drug-loaded poly(lactic-co-glycolic) acid (PLGA) carriers in terms of material and morphological properties of the drug carriers. To take into account the spatial-temporal variation of the drug and water diffusion coefficients, three new correlations are developed in terms of spatial-temporal variation of the molecular weight of the degrading polymer chains. The first one relates the diffusion coefficients with the time-spatial variation of the molecular weight of PLGA and initial drug loading and, the second one with the initial particle size, and the third one with evolution of the particle porosity due to polymer degradation.
View Article and Find Full Text PDFA HPLC method coupled with diode array detector was developed and validated for the quantitation of alizarin, apigenin, carminic acid, curcumin, ellagic acid, emodin, fisetin, kaempferide, kaempferol, kermesic acid, morin, purpurin, quercetin and sulfuretin which are components of several natural dyes. 1- Hydroxyanthraquinone was selected as internal standard. The compounds were separated under gradient elution on a RP-column (Altima C18, 250 mm x 3.
View Article and Find Full Text PDFAn integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements.
View Article and Find Full Text PDFIndigotin, indirubin, 6-bromoindigotin, 6'-bromoindirubin, 6-bromoindirubin, 6,6'-dibromoindigotin and 6,6'-dibromoindirubin, the colouring components of Tyrian purple, are quantified by an efficient HPLC method coupled to a diode array detector. The compounds were separated using gradient elution, on a RP-column (Alltima C18, 250mm×3.0mm i.
View Article and Find Full Text PDF