. The purpose of this study was to perform preliminary pre-clinical tests to compare the dosimetric quality of two approaches to treating moving tumors with ion beams: synchronously delivering the beam with the motion of a moving planning target volume (PTV) using the recently developed multi-phase 4D dose delivery (MP4D) approach, and asynchronously delivering the ion beam to a motion-encompassing internal tumor volume (ITV) combined with rescanning..
View Article and Find Full Text PDFPurpose: Highly conformal scanned Carbon Ion Radiotherapy (CIRT) might permit dose escalation and improved local control in advanced stage thoracic tumors, but is challenged by target motion. Dose calculation algorithms typically assume a periodically repeating, regular motion. To assess the effect of realistic, irregular motion, new algorithms of validated accuracy are needed.
View Article and Find Full Text PDFPurpose: To predict and mitigate for the degradation in physical and biologically effective dose distributions of particle beams caused by microscopic heterogeneities in lung tissue.
Materials And Methods: The TRiP98 treatment planning system was adapted to account for the beam-modulating effect of heterogeneous lung tissue in physical and biological inverse treatment planning. The implementation employs an analytical model that derives the degradation from the established "modulation power" parameter and the total water-equivalent thickness of lung parenchyma traversed by the beam.
Purpose: The purpose of this study was to validate the dosimetric performance of scanned ion beam deliveries with motion-synchronization to heterogenous targets.
Methods: A 4D library of treatment plans, comprised of up to 10 3D sub-plans, was created with robust and conventional 4D optimization methods. Each sub-plan corresponded to one phase of periodic target motion.
Background: Quality management and safety are integral to modern radiotherapy. New radiotherapy technologies require new consensus guidelines on quality and safety. Established analysis strategies, such as the failure modes and effects analysis (FMEA) and incident learning systems have been developed as tools to assess the safety of several types of radiation therapies.
View Article and Find Full Text PDFWe investigated the dose differences between robust optimization-based treatment planning (4DRO) and range-adapted internal target volume (rITV). We used 4DCT dataset of 20 lung cancer and 20 liver cancer patients, respectively, who had been treated with respiratory-gated carbon-ion pencil beam scanning therapy. 4DRO and rITV plans were created with the same clinical target volume (CTV) and organs at risk (OAR) contours.
View Article and Find Full Text PDFPurpose: To investigate the suitability of the linear-quadratic (LQ) and universal survival curve (USC) models in describing the 3-year tumor control probability data of patients with stage I non-small cell lung cancer treated with carbon-ion radiation therapy. Carbon-ion radiation therapy was given at a total dose of 59.4 to 95.
View Article and Find Full Text PDFThe use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration.
View Article and Find Full Text PDF